
1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 1

Elasticity in Cloud Computing: State of the Art
and Research Challenges

Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, Philippe Merle

Abstract—Elasticity is a fundamental property in cloud computing that has recently witnessed major developments. This article
reviews both classical and recent elasticity solutions and provides an overview of containerization, a new technological trend in
lightweight virtualization. It also discusses major issues and research challenges related to elasticity in cloud computing. We
comprehensively review and analyze the proposals developed in this field. We provide a taxonomy of elasticity mechanisms according
to the identified works and key properties. Compared to other works in literature, this article presents a broader and detailed analysis of
elasticity approaches and is considered as the first survey addressing the elasticity of containers.

Index Terms—Elasticity; Cloud Computing; Auto-scaling; Resource provision; Scalability; Containers.

F

1 INTRODUCTION

C LOUD computing has been gaining more popularity
in the last decade and has received a great deal of

attention from both industrial and academic worlds. The
main factor motivating the use of cloud platforms is their
ability to provide resources according to the customer’s
needs or what is referred to as elastic provisioning and de-
provisioning. Therefore, elasticity is one of the key features
in cloud computing that dynamically adjusts the amount
of allocated resources to meet changes in workload de-
mands [1].

Cloud providers generally use virtualization-based ap-
proach to build their stack. Virtualization makes it possible
to run multiple operating systems and multiple applications
on the same server at the same time. It creates an abstract
layer that hides the complexity of both hardware and soft-
ware working environments. Cloud computing paradigm
allows workloads to be deployed and scaled-out quickly
through the rapid provisioning of the virtualized resources.
This deployment is done through virtual machines (VMs).
Virtualization is commonly implemented with hypervisors.
A hypervisor is one of the virtualization techniques that al-
lows multiple operating systems to share a single hardware
host in a way that each operating system appears to have its
own independent resources. VMware ESX, KVM, Xen, and
Hyper-V are examples of the worldwide used hypervisors.

Container-based virtualization, called operating system
virtualization, is another approach to virtualization in which
the virtualization layer runs as an application within the
operating system (OS). Containers are a lightweight solution
that allows faster start-up time and less overhead [2]. There-

• Y. Al-Dhuraibi is with Scalair company, Hem, France.
E-mail: yaldhuraibi@scalair.fr

• F. Paraiso is with Inria Lille - Nord Europe, Villeneuve d’Ascq, France.
E-mail: fawaz.paraiso@inria.fr

• N. Djarallah is with Scalair company, Hem, France.
E-mail: ndjarallah@scalair.fr

• P. Merle is with Inria, Lille - Nord Europe, Villeneuve d’Ascq, France.
E-mail: philippe.merle@inria.fr

Manuscript received March 27, 2017.

fore, since virtualization is a central part of cloud computing
that helps to improve elasticity, we discuss cloud elasticity
in the context of VMs and containers. In the literature, there
exist various definitions, mechanisms, strategies, methods,
and solutions for elasticity in both industrial and research
works.

Elasticity has been explored by researchers from
academia and industry fields. Many virtualization tech-
nologies, on which cloud relies, continue to evolve. Thus,
tremendous efforts have been invested to enable cloud
systems to behave in an elastic manner and many works
continue to appear. Therefore, we are motivated to provide
a comprehensive and extended classification for elasticity
in cloud computing. This article focuses on most aspects of
the elasticity and it particularly aims to shed light on the
emerging container elasticity as well as the traditional VMs.
Although many elasticity mechanisms have been proposed
in the literature, our work addressing more broader classifi-
cation of elasticity taxonomy. It is also the first survey that
highlights elasticity of containers. The major contributions
of this article are summarized as:

• First, we propose a precise definition of elasticity and we
highlight related concepts to elasticity such as scalability
and efficiency and approaches to measure elastic systems.

• Second, we provide an extended classification for the
elasticity mechanisms according to the configuration, the
scope of the solution, purpose, mode, method, etc. For
example, when discussing the mode of elasticity that can
be reactive or proactive to perform elasticity decisions, we
discuss in depth each mode by classifying the mode into
other subcategories and presenting works that follow the
mode as shown in Table 1.

• Third, we discuss the existing container technologies and
their relation to cloud elasticity. This article is the first
work that discusses container elasticity in presenting
many recent works from the literature.

The remainder of the article is organized as follows.
Section 2 explains the elasticity concept, its related terms,
its classical solution classifications and our new extended



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 2

classification, the tools, and platforms that have been used in
the experiments of the existing works in the literature. This
section describes cloud elasticity solutions in the VMs. Next,
Section 3 presents the concept of containerization, and how
it could improve elasticity in cloud computing. It discusses
the few existing papers on cloud elasticity when containers
are used. Then, in Section 4, we present the main research
challenges in elasticity and also the limits in the new trend
of containerization. Section 5 discusses some related work.
Finally, Section 6 concludes the paper.

2 ELASTICITY

In order to well understand the elasticity, we describe some
related concepts, in addition to a new refined and compre-
hensive definition for elasticity. We propose a classification
and taxonomy for elasticity solutions based on the char-
acteristics: configuration, scope, purpose, mode, method,
provider, and architecture. This classification is a result of
thorough study and analysis of the different industrial and
academic elasticity solutions. This classification provides
a comprehensive and clear vision on elasticity in cloud
computing. We then review the elasticity evaluation tools
and platforms implemented in diverse works.

2.1 Elasticity definition and its related terms
There have been many definitions in the literature for elas-
ticity [3], [4], [5], [1]. However, from our point of view, we
define elasticity as the ability of a system to add and remove
resources (such as CPU cores, memory, VM and container
instances) ”on the fly” to adapt to the load variation in real
time. Elasticity is a dynamic property for cloud computing.
There are two types of elasticity as shown in Fig. 1: horizon-
tal and vertical. Horizontal elasticity consists in adding or
removing instances of computing resources associated with
an application. Vertical elasticity consists in increasing or
decreasing characteristics of computing resources, such as
CPU time, cores, memory, and network bandwidth.

Fig. 1. Horizontal vs Vertical elasticity

There are other terms such as scalability and efficiency,
which are associated with elasticity but their meaning is
different from elasticity while they are used interchangeably
in some cases. Scalability is the ability of the system to
sustain increasing workloads by making use of additional
resources [5], it is time independent and it is similar to

the provisioning state in elasticity but the time has no
effect on the system (static property). In order to have a
complete understanding, we deduce the following equation
that summarizes the elasticity concept in cloud computing.

Elasticity = scalability + automation︸ ︷︷ ︸
auto-scaling

+optimization

It means that the elasticity is built on top of scalability. It can
be considered as an automation of the concept of scalability,
however, it aims to optimize at best and as quickly as pos-
sible the resources at a given time. Another term associated
with elasticity is the efficiency, which characterizes how
cloud resource can be efficiently utilized as it scales up or
down. It is the amount of resources consumed for process-
ing a given amount of work, the lower this amount, the
higher the efficiency of a system. The amount of resources
can relate to cost, power consumption, etc., depending on
the targeted resource [6]. Generally, this is a measure of
how well the application is using the provided resources.
Higher cloud elastic system results in higher efficiency. The
processes of resource provisioning and scheduling (i.e., jobs
or customer’ requests on instances) are both related to elas-
ticity since they try to provision instances but in response to
provider and customer tradeoffs. [7], [8] provision resources
according to a utility model to satisfy customers needs and a
certain pricing model to increase service provider profit. The
provisioning and scheduling processes may take a certain
delay in order to meet SLAs and provider profit conditions.

It is worth noting that scaling up or down the resources
can lead to a deviation of the current amount of allocated
resources from the actual required resource demand. The
accuracy of elasticity systems varies from one system to
another. Over-provisioning and under-provisioning are two
important factors that characterize an elastic system. The
system enters in over-provisioning state once the resources
provided (called supply S) are greater than the consumer
required resources (called demand D), i.e., S > D. Though
QoS can be achieved, over-provisioning state leads to extra
and unnecessary cost to rent the cloud resources. Under-
provisiong takes place once the provided resources are
smaller than the required resources, i.e., S < D, and this
causes performance degradation and violation of service
level agreement (SLA). There is no common methodology
to measure or determine temporal or quantitative metrics
for elasticity. A consumer can measure the delay it takes
to provision and de-provision resources, in addition to the
sum of delays of over-provisioning and under-provisioning
states to quantify different elastic systems [9].

[10] discusses methods to measure scalability and elas-
ticity of a system. According to [10], effects of scalability
are visible to the user via observable response times or
throughput values at a certain system size. On the other
hand, the elasticity, namely the resource resizing actions,
may be invisible to the user due to their shortness or due to
the transparency and dynamicity of resource provisioning.
The effect of reconfiguration on performance metrics (e.g.,
response time) due to elastic adjustments of resource and
the reaction time can quantify the elasticity. It is clear that
elasticity is controlled with time. Therefore, the speed is
also very important in elasticity. Reaction time is the time



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 3

interval between the instant when a reconfiguration has
been triggered/requested and until the adaptation has been
completed.

[11] proposes an approach for elasticity measurements.
In addition to the over-provisioning and under-provisioning
states, another state called just-in-need is introduced. Just-
in-need denotes a balanced state, in which the workload
can be properly handled and quality of service (QoS) can be
satisfactorily guaranteed. The approach developed calcula-
tion formulas for measuring elasticity values based on the
time intervals a system stays in one state. There are three
states: over-provisioning, under-provisioning, and just-in-
need. A set of rules is used to determine the state of a
system based on the workload and computing resources.
The equations can be obtained and calculated by directly
monitoring the system or by using continuous-time Markov
chain (CTMC) model. The drawback of the proposed system
is that it assumes the system is in a certain state based on
rules. For example, the system is in just-in-need state if the
number of requests (j) is greater than the number of VMs
(i) and less than 3 multiplied by the number of VMs (i), i.e.,
(i < j 6 3i). We cannot guarantee the certainty for these
rules on all elastic systems.

2.2 Elasticity taxonomy

Elasticity solutions build their mechanisms on different
strategies, methods, and techniques. Therefore, different
classifications [3], [4], [12], [13], [14] have been proposed
according to the characteristics implemented in the solu-
tions. We have investigated many industrial and academic
solutions, in addition to papers in the elasticity literature,
and then we propose the classification shown in Fig. 2. It is
an extended and complementary elasticity classification as
compared to classification in [3], [4], [12], [13], and [14].

Next subsections explain in details each characteristic
and mechanism used. The solutions are classified according
to the chosen configuration, scope, purpose, mode or policy,
method or action, architecture, and provider.

2.2.1 Configuration
Generally, configuration represents a specific allocation of
CPU, memory, network bandwidth and storage [15]. In
the context of our classification (see Fig. 2), configuration
represents the method of the first or initial reservation of
resources with a cloud provider. During the first acquisition
of resources, the consumer either chooses from a list of
offer packs or specifies its needs, i.e., combining different
resources. Therefore, the configuration can be either rigid
(fixed) or configurable. The rigid mode means that the
resources are offered or provisioned in a constant capacity.
The virtual machine instances (VMIs) are found with a
predefined resource limit (CPU, Mem, etc.) called instances
such as Amazon EC2 (offering 38 instances), Microsoft
Azure (offering many series A, D, DS, G, and GS and each
series has different VM sizes). In the cloud market, the VMIs
are offered in various configurations.

The problem with rigid configuration is that the re-
source rarely meets the demand, therefore, there is always
under-provisioning or over-provisioning. The configurable
mode allows the client to choose the resource such as

number of CPU cores in the VMs. ProfitBricks [16] and
CloudSigma [17] are examples of this type.

The customers can reserve the resources according to the
following reservation methods [15]:
• On-demand reservation: The resources are reserved im-

mediately or the requests will be rejected if there are no
enough available resources.

• In advance reservation: The clients send initial requests
to reserve resources and a fixed price charge is required
to initiate the reservation, the resources must be available
at a specific time.

• Best effort reservation: Reservation requests are queued
and served accordingly such as Haizea, an open-source
VM-based lease management architecture used in Open-
Nebula [18].

• Auction-based reservation: Specific resource configura-
tions are reserved dynamically as soon as their prices are
less than bid amount offered by the customer [19].

• There are other types of reservation such as Amazon’s
scheduled reserved instances, Amazon’s dedicated in-
stances, Google’s preemptible instances, etc.

2.2.2 Scope
The elasticity actions can be applied either at the infras-
tructure or application/platform level. The elasticity actions
perform the decisions made by the elasticity strategy or
management system to scale the resources.

When the elasticity action control is in the application
or platform level, it is named embedded elasticity and
this will be described below. Google App Engine [20],
Azure elastic pool [21] are examples of elastic Platform
as a Service (PaaS). The applications can be either one
tier or multi-tiers, most of the existing elasticity solu-
tions are dedicated to one-tier applications where elasticity
management is performed for one tier only, mostly the
business tier. However, there are some recent works that
perform elasticity actions on multi-tier applications such
as [22], [23], [24], [25], [26], [27], [28], [29].

Beside this, the elasticity actions can be performed at the
infrastructure level where the elasticity controller monitors
the system and takes decisions. The cloud infrastructures
are based on the virtualization technology, which can be
VMs or containers. Most of the elasticity solutions [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38] are dedicated to
the infrastructure level, and these solutions are suitable for
client-server applications. However, other elastic solutions
exist for the other types of applications. For example, [39]
and Amazon EMR are elastic solutions for MapReduce ap-
plications, [40] describes an elasticity solution for streaming
applications, while [12] discusses approaches for elasticizing
scientific applications. Due to the nature of a scientific
application such as parallelism, models (e.g., serial, multi-
thread, single program multiple data, master-worker, etc.),
an elasticity solution can not be generalized for scientific ap-
plications. The elasticity solution must consider the internal
structure and behavior of a scientific application, therefore,
to have a reliable elastic solution, it should be embedded
in the application source code. It is worth mentioning that
some elasticity controllers support sticky sessions. The ses-
sion is the concept of a series of interactions between a client
and the application. The stateful nature of some sessions



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 4

Fig. 2. Classification of the elasticity mechanisms

forces the user to be connected to the same server each time
he submits a request within the session, if the session data is
stored in the server, such sessions are called sticky sessions.
Sticky sessions cause issues on efficiently utilizing elastic
resources because they limit the ability of the elastic con-
troller to terminate under-utilized instances when there are
still unfinished sessions handled by them. Most solutions
support stateless applications, while few solutions [41], [42]
handle stateful instances or sticky sessions.
Embedded Elasticity
Most of the existing solutions are dedicated to server-based
applications. However, there are many different application
modules that have different execution behavior particular-
ities such as scientific applications. Therefore, we named
these types of solutions as embedded elasticity controller.
In the embedded elasticity, elastic applications are able to
adjust their own resources according to runtime require-
ments or due to changes in the execution flow. There must
be knowledge of the source code of the applications. As seen
in Fig. 2, we classify these solutions into two subcategories.

• Application Map: The elasticity controller must have a
complete map of the application components and in-
stances. As it is well known that some applications com-
prise of many components and each component may
have many instances. These components are either static
or dynamic. Static components must be launched once
the application starts, while dynamic components can be
started or stopped during the application runtime. In ad-
dition, there are interconnections between these instances.

Therefore, the elasticity controller must have all the infor-
mation about the application instances, components, and
interconnections that allow it to perform elasticity actions
for applications. [43], [44], [45], [46] are examples of such
works.

• Code embedded: The idea here is that the elasticity con-
troller is embedded in the application source code. The
elasticity actions are performed by the application itself.
While moving the elasticity controller to the application
source code eliminates the use of monitoring systems,
there must be a specialized controller for each application.
Examples of these solutions are [12] and [39].

2.2.3 Purpose

Elasticity has different purposes such as improving perfor-
mance, increasing resource capacity, saving energy, reducing
cost and ensuring availability. Once we look to the elastic-
ity objectives, there are different perspectives. Cloud IaaS
providers try to maximize the profit by minimizing the
resources while offering a good Quality of Service (QoS),
PaaS providers seek to minimize the cost they pay to the
cloud and the customers (end-users) search to increase
their Quality of Experience (QoE) and to minimize their
payments. QoE is the degree of delight or annoyance of
the user of an application or service [47]. The goal of
QoE management is then to deliver the cloud application
to the end user at high quality, at best while minimizing
the costs of the different players of the cloud computing
stack (IaaS, PaaS, SaaS) [48]. As consequences, there have



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 5

been many trade-offs. Elasticity solutions cannot fulfill the
elasticity purposes from different perspectives at the same
time, each solution normally handles one perspective. How-
ever, some solutions try to find an optimal way to balance
some of the contradicted objectives. [8] scales resources
according to a utility model to reply to customers QoE
and a dedicated pricing model to increase service provider
gains. [49] presents a survey of how to look for balancing
two opposed goals, i.e., maximizing QoS and minimizing
costs. As shown in Table 1, most proposals improve the
performance. However, there are other works that have
described the use of elasticity for purposes, such as, in-
creasing the local resources capacity [32], [50], cost reduc-
tion [22], [23], [37], [51], [52], [53], [54], [55], [56], [57], [58],
[59] and energy savings [38], [44], [53], [60], [61]. Many
of the elasticity management solutions as indicated in [13]
takes into consideration Quality of Business metrics that
are often expressed in monetary units and include service
price, revenue per user, revenue per transaction, provi-
sioning cost, and budget. Examples of the solutions that
ensure the availability include [24], [28], [53], [62], [63]. [61]
takes into consideration both the provider profit and user
QoE. In this work, various algorithms have been studied in
order to obtain the best trade-off between the user or SLA
requirements and provider profit. [64], [65] also proposes
QoE-aware management elastic approaches that try to max-
imize users satisfaction without extra costs. Other examples
for improving the performance are found in the research
community and commercial clouds such as Rackspace [33],
Scalr [36], RightScale [34].

2.2.4 Mode or policy

Mode (policy) refers to the needed interactions (or manner)
in order to perform elasticity actions. Elasticity actions are
performed by an automatic mode. Scaling actions can be
achieved by manual intervention from the user. As indi-
cated in [12], there is also another mode, which is called
programmable mode. In fact, it is just the same as manual
mode because the elasticity actions are performed using
API calls. Though a cloud provider offers an interface
which enables the user to interact with the cloud system.
The manual policy is used in some cloud systems such as
Datapipe [148], Rackspace [33], Microsoft Azure [21], and
the Elastin framework [45] where the user is responsible for
monitoring the virtual environment and applications, and
for performing all scaling actions. This mode can not be
considered as an elasticity mode since it violates the concept
of automation.

Automatic mode: All the actions are done automatically,
and this could be classified into reactive and proactive
modes.
1) Reactive mode means the elasticity actions are trig-

gered based on certain thresholds or rules, the sys-
tem reacts to the load (workload or resource utiliza-
tion) and triggers actions to adapt changes accord-
ingly. Most cloud platforms such as Amazon EC2 [30],
Scalr [36], Rightscale [34] and other research works such
as [55], [122], [149], [150] use this technique.
• Static thresholds or role-condition-actions: The elastic-

ity actions are fired to scale up or down the resources

when the role-condition is met. This policy depends
on thresholds or SLA requirements, the conditions are
based on the measurements of one or set of metrics
such as CPU utilization, memory utilization, response
time, etc. Two or more thresholds are used for each
performance metric. The measured metrics are com-
pared against fixed thresholds. For example, if CPU
utilization is greater than 80%, and this situation lasts
5 minutes, then the resource is scaled up. Amazon
EC2, Rightscale and other research works such as
[24], [27], [28], [32], [54], [55], [57], [63], [67], [78], [80],
[83], [84], [95], [96], [97], [98] use such mechanism.

• Dynamic thresholds: Previous thresholds are static
and are fixed user-defined values. On the contrary, dy-
namic thresholds, called adaptive thresholds, changed
dynamically according to the state of the hosted ap-
plications. The works in [58], [60], [100], [101] use the
adaptive utilization thresholds technique. The thresh-
olds such as CPU utilization are changed dynamically.

2) Proactive mode: This approach implements forecasting
techniques, anticipates the future needs and triggers ac-
tions based on this anticipation. Many academic works
such as [31], [35], [37] use this mode as we will see in the
following proactive techniques.
• Time series analysis: Time series is a sequence of

measurements taken at fixed or uniform intervals [151].
Time series analysis is used to identify repeating pat-
terns in the input workload and to attempt to forecast
the future values. In other terms, time series analysis is
responsible for making an estimation of the future re-
source and workload utilization, after this anticipation,
the elasticity controller will perform actions based on
its policy (e.g., set of predefined rules). Generally, the
time series analysis has two main objectives. Firstly,
predicting future values (points) of the time series
based on the last observations (recent usage). Secondly,
identifying the repeated patterns, if found, then use
them to predict future values. The recent history win-
dow (resource usage) is used as input to the antici-
pation technique which in turn generates future val-
ues. For achieving the first objective, there are several
techniques such as Moving-Average, Auto-Regression,
ARMA, Holt winter and machine learning. For exam-
ple, [29], [51], [79], [82], [83], [84], [87], [90], [110], [111]
use machine learning. [27], [106], [107] use Moving-
Average. [23], [24], [25], [108], [109] follow Auto-
Regression technique while [23], [35], [67] follow
ARMA approach. Holt winter is used by [54], [107].
In order to achieve the second purpose, various tech-
niques are used to inspect the repetitive patterns in
time series: pattern matching [108], [112], Fast Fourier
Transform (FFT) [108], auto correlation [152], his-
togram [108].

• Model solving mechanisms are approaches based on
probabilistic model checking or mathematical mod-
eling frameworks to study the diverse behaviours
of the system and anticipates its future states such
as Markov Decision Processes (MDPs), probabilistic
timed automata (PTAs). [92] and [99] are examples of
works that adopt model solving approaches. [75] is a



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 6

TABLE 1
Examples on elasticity solutions

Elasticity

Configuration Rigid [21], [30]
Configurable [16], [17]

Scope

Infrastructure VMs [29], [30], [31], [32], [33], [34], [35], [36], [37], [38]
Containers [56], [66], [67], [68], [69], [70]

Application/ Platform

Single-tier [40], [44], [45], [46], [50], [71], [72], [73], [74]
Multi-tier [22], [23], [24], [25], [26], [27], [28], [29], [75]

Application map [43], [44], [45], [46]
Code embedded [12], [39]

Purpose

Performance
[22], [23], [26], [27], [29], [30], [31], [32], [33], [34], [35], [36], [38], [40], [45], [46],

[55], [58], [67], [71], [73], [75], [76], [77], [78], [79], [80], [81], [82], [83], [84], [85],
[86], [87], [88], [89], [90], [91], [92]

Cost [22], [23], [37], [51], [52], [53], [54], [55], [56], [57], [58], [59], [93], [94]
Capacity [32], [50]
Energy [38], [44], [53], [60], [61]

Availability [24], [28], [53], [62], [63]

Mode Automatic

Reactive

Threshold-based policies
[24], [27], [28], [32], [54], [55], [57],

[63], [67], [78], [80], [83], [84], [91],
[95], [96], [97], [98], [99]

Dynamic thresholds [58], [60], [100], [101]
Reinforcement learning [72], [96], [102]

Queuing theory [55], [57], [59], [103]
Control theory [89], [100], [101], [104], [105]

Proactive

Time series analysis

Moving average [27], [106], [107]

Auto regression [23], [24], [25],
[108], [109]

ARMA [23], [35], [67]
Holt winter [54], [107]

Machine learning

[29], [51], [79],
[82], [83], [84],
[87], [90], [110],
[111]

Pattern [108], [112]
Model solving approaches [75], [92], [99]

Reinforcement learning [113], [114]
Queuing theory [103], [114], [115], [116], [117]
Control theory [22], [26], [91], [105], [118]

Method

Horizontal scaling [23], [24], [28], [29], [30], [32], [33], [34], [35], [36], [50], [55], [63], [71], [79], [81],
[99], [119], [120], [121], [122], [123], [124]

Vertical scaling
CPU [26], [38], [116], [125], [126]

Memory [74], [127], [128]
CPU & Mem. [31], [54], [129], [130], [131], [132], [133]

Migration [38], [45], [61], [73], [86], [90], [134], [135], [136], [137], [138], [139], [140], [141]
Hybrid [37], [38], [44], [51], [58], [90], [91], [142]

Architecture Centralized Most approaches presented in this table except the decentralized ones
Decentralized [93], [94], [143], [144], [145], [146]

Provider Single [22], [23], [24], [25], [27], [54], [55], [57], [78], [79], [82], [87], [100], [147]
Multiple [28], [53], [62], [63], [66], [93], [142], [145]

more recent work that uses Alloy models to increase
the performance of the model solving (i.e., most of
the MDP models and combinations are build offline
using formal specification in Alloy which eliminates
the runtime overhead of MDP construction for each
adaptation decision).

There are other mechanisms that can be used with both
reactive and proactive approaches (when accompanied
with other mathematical models such as Markov De-
cision Process, Q-learning algorithm, Model predictive
control (MPC)):
• Reinforcement Learning (RL) is a computational ap-

proach that depends on learning through interactions
between an agent and the system or environment.
The agent (decision-maker) is responsible for taking
decisions for each state of the environment, trying to
maximize the return reward. The agent learns from the
feedback of the previous states and rewards of the sys-
tem, and then it tries to scale up or down the system by
choosing the right action. For example, [72], [96], [102]

use RL in reactive mode while [113], [114] use RL in
proactive mode.

• Control theory controls systems function in reactive
mode [89], [100], [101], [104], [105], but there are
some cases in which they can work in proactive
mode [22], [26], [105], [118]. There exist three types
of these controllers: Openloop controllers, Feedback
controllers, and Feedback and Feedback-forward con-
trollers. Openloop (non feedback) controllers compute
the input to the system, these controllers do not have
feedback to decide whether the system is working well
or not. Feedback controllers monitor the output of the
system and correct the deviation against the desired
goal. Feedback-forward controllers predict errors in the
output, anticipate the behavior of the system and react
before errors occur. Feedback and feedback-forward
controllers are usually combined.

• Queuing theory is a mathematical study for queues
in the system taking in consideration the waiting
time, arrival rate, service time, etc. Queuing theory



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 7

is intended for systems with a stationary nature. It
can be used to model applications (single or multi-
tiers). [55], [57], [103], [59] use queuing theory in reac-
tive mode while [103], [114], [115], [116], [117] adhere
to the queuing theory principles in predictive mode.
For example, [115] proposes a model that estimates
the resources required for a given workload λ, the
mean response time, and other parameters. [116] uses
queue length and inverse model to anticipate capacity
requirement taking in consideration also the target
response time.

Before finishing this section, it is worth mentioning that
many works generally span across different subcategories,
use more than one technique and that is why they appear
more than once in Table 1. Many systems and proposals
adhere to use a combination of reactive and proactive
policies, e.g., [83], [84] use threshold and machine learning
policies. [27] implements threshold-based rules and moving
average while [24] uses thresholds and auto-regression. [54]
uses thresholds and holt-winter. [55], [57] combine thresh-
olds based rules and queuing theory in reactive mode only.
Similarly, [100], [101] use dynamic thresholds and queuing
theory while [96] combines thresholds and enforcement
learning. [67] uses static thresholds for CPU and memory
usage, ARMA to predict the number of requests for Web
applications. Other works used more than one technique
in proactive mode. For example, [23] implements auto-
regression and ARMA. [114] uses reinforcement learning
and queuing theory. [108] combines auto-regression and
pattern matching.

2.2.5 Method

To deploy the elasticity solutions, one or hybrid of the fol-
lowing methods is implemented: horizontal scaling, vertical
scaling. Horizontal elasticity allows adding new instances
while vertical elasticity, referred to as fine-grained resource
provisioning, allows resizing the resources of the instance
itself to cope with the runtime demand. The instances can
be VMs, containers, or application modules. Horizontal and
vertical techniques have their advantages and shortcom-
ings. Horizontal elasticity is simple to implement and it is
supported by hypervisors. It has been widely adopted by
many commercial providers. However, horizontal elasticity
can lead to inefficient utilization of the resources due to
the fact that it provides fixed or static instances, which
sometimes cannot fit exactly with the required demand. On
the contrary, vertical elasticity allows resizing the instances
but it is not fully supported by all hypervisors, although
new hypervisors such as Xen, VMware support it.

• Horizontal scaling is the process of adding/removing
instances, which may be located at different locations.
Load balancers are used to distribute the load among the
different instances. It is the most widely implemented
method, most cloud providers such as Amazon [30],
AzureWatch [71], and many other academic works as
shown in Table 1 use this method.

• Vertical scaling is the process of modifying resources
(CPU, memory, storage or both) size for an instance at
runtime. It gives more flexibility for the cloud systems
to cope with the varying workloads. There are many

works [26], [116], [38], [125], [126] that only focus on CPU
vertical resizing, other works [74], [127], [128] focus on
memory resizing. It is worth noting that, there have been
many techniques used in literature for memory resizing
such as EMA, page faults, ballooning [132]. While there
exist some proposals [31], [129], [130], [131], [133] that con-
trol both resources (CPU, memory). [132] is a particular
work that not only controls both resources (CPU, mem-
ory) but also coordinates the degree of vertical resizing
of the CPU in relation to the memory. [54] proposes a
mechanism to resize CPU, Disk, and memory. ProfitBricks
and RightScale cloud providers offer this feature to its
customers.
Migration can be also considered as a needed action
to further allow the vertical scaling when there is no
enough resources on the host machine. However, it is
used for other purposes such as migrating a VM to a
less loaded physical machine just to guarantee its perfor-
mance, etc. Several types of migration are deployed such
as live migration [38], [45], [86], [90], [139] and no-live
migration [153]. Live migration has two main approaches
post-copy [141] and pre-copy [134]. Post-copy migration
suspends the migrating VM, copies minimal processor
state to the target host, resumes the VM and then begins
fetching memory pages from the source [154]. In pre-copy
approach, the memory pages are copied while the VM
is running on the source. If some pages changed (called
dirty pages) during the memory copy process, they will
be recopied until the number of recopied pages is greater
than dirty pages, or the source VM will be stopped, and
the remaining dirty pages will be copied to the destination
VM.

Before performing migration or replication, a Resource Al-
location Strategy (RAS) [155] is used. RAS decides where
the destination or new instance will be allocated or created,
on which server, on which cloud data center. RAS is based
on cost and speed of VM, the CPU usage of the physical
machine, the load conditions specified by the user, the
maximum profit [155], etc.

Many works have used a combination of the previously
described methods. [37], [44] proposals implement repli-
cation and migration methods. [58] proposes an approach
that creates new small replicas and then attaches them to
load balancer or deploys a new big server and removes the
previous server. The application is then reconfigured to use
the provided new resources. [51] proposes a framework that
uses a combination of vertical resizing (adding resources
to existing VM instances) or horizontal scaling (adding
new VM instances). [90] reconfigures CPU and memory,
live migration is triggered when there is no sufficient re-
sources. [38] configures CPU voltage and frequency and it
also uses live migration.

2.2.6 Architecture
The architecture of the elasticity management solutions
can be either centralized or decentralized. Centralized ar-
chitecture has only one elasticity controller, i.e., the auto-
scaling system that provisions and de-provisions resources.
Most solutions presented in the academic literature and
business world have a centralized architecture while there
are some solutions that are decentralized such as [143]



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 8

and [144]. In decentralized solutions, the architecture is
composed of many elasticity controllers or application man-
agers, which are responsible for provisioning resources for
different cloud-hosted platforms. In addition to an arbiter
which is the key master component in a decentralized
approach because it is charged to allocate resources to the
other controllers at the different system components. Multi-
Agent Systems (MAS) also represent a distributed comput-
ing paradigm based on multiple interacting agents. The
interacting agents with cloud shape a new discipline called
agent-based cloud computing. Multiple agents allow cloud
computing to be more flexible and more autonomous [156].
MAS technologies have been used to decentralize the elas-
ticity management decision [157]. Some examples of existing
works using MAS for cloud elasticity, cloud service reserva-
tion, and SLA negotiation include [94], [93], [145], [146].

2.2.7 Provider
Elastic solutions can be applied to a single or multiple cloud
providers. A single cloud provider can be either public
or private with one or multiple regions or datacenters.
Multiple clouds in this context mean more than one cloud
provider. It includes hybrid clouds that can be private
or public, in addition to the federated clouds and cloud
bursting. Most of the elasticity solutions and proposals
support only a single cloud provider. However, there are
other works [28], [53], [62], [63], [142] that handle elasticity
between multiple cloud providers simultaneously.

2.3 Elasticity performance evaluation

Experiments are very important for the performance eval-
uation in cloud elasticity systems. However, there is no
standard method for evaluating auto-scaling and elasticity
techniques due to the uncertainties in the workloads and
unexpected behaviors of the system. Therefore, researchers
use different testing environments according to their own
needs. We introduce the common experimental platforms,
workloads, and application benchmarks, as shown in Fig. 3,
that have been used in the literature.

Fig. 3. Performance evaluation tools

2.3.1 Experimental platforms
Experiments can be achieved using simulators, custom
testbeds or real cloud providers.
Simulators are widely used to simulate cloud plat-
forms [152]. Using simulators in evaluating elasticity sys-
tems and application behaviors offer significant benefits,

as they allow developers to test the performance of their
systems in a repeatable and controllable environment free of
cost and they also allow to tune the performance bottlenecks
before real-world deployment on commercial clouds. Some
cloud simulators are:
• CloudSim [158]: a powerful framework for modeling and

simulation of cloud computing infrastructures and ser-
vices. It is widely used in research works.

• ContainerCloudSim [159] is another simulation tool that
integrates most functionalities of CloudSim. It aims to
provide support for modeling and simulation of con-
tainerized cloud computing environments. It supports
modeling and simulation for container resource man-
agement, placement, migration on the simulated cloud
environment.

• GreenCloud [160]: used to develop novel solutions in
monitoring, resource allocation, workload scheduling, as
well packet-level simulator for energy-aware cloud com-
puting data centers.

• OMNeT++ [161]: framework used primarily for building
network simulators but it is also used in cloud platforms.

• iCanCloud [162]: targeted to conduct large experiments,
provides a flexible and customizable global hypervisor for
integrating any cloud brokering policy.

• SimGrid [163]: simulator for large-scale distributed sys-
tems such as clouds.

• EMUSIM [164]: an integrated emulation and simulation
environment for modeling, evaluation, and validation of
the performance of cloud computing applications.

Custom testbeds offer more control on the platform, but
they require extensive efforts for system configuration. For
deploying custom testbeds or clouds, many technologies
are used such as hypervisors (Xen, VMWare ESXi, KVM,
etc.), cloud orchestrators such as OpenStack, CloudStack,
OpenNebula, Eucalyptus, and the commercial VCloud.
Academic cloud testbeds such as Grid5000, FutureGrid,
open research clouds are also widely used.
Public clouds. While achieving experiments on a real
cloud reflects the reality, it has a big drawback: there are
external factors that cannot be controlled, which could
impact negatively the tested system. In addition, cloud
provider offers the infrastructure (on which the experiment
will be launched), but monitoring and auto-scaling system,
application benchmark, workload generators are still
needed.

2.3.2 Workloads
User requests or demand together with timestamps are
required for the tested platforms (to derive the experiments).
Workloads can be synthetic or real.

• Synthetic workloads are generated with special programs
in a form of different patterns. Faban, JMeter, httperf,
Rain are examples of workload generators.

• Real workloads are obtained from real cloud platforms
and stored in trace files. World cup [165], Clark net [166],
and Google Cluster trace [167] are examples of real
workloads. Different application workloads have



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 9

different characteristics. Therefore, there exist no single
elasticity algorithm which is perfect for the diverse
types of workloads. Workload analysis and classification
tools [27], [168] are used to analyze workloads and assign
them to the most suitable elasticity controller based on
the workload characteristics and business objectives.

2.3.3 Application benchmark
To test the scale up/down and scale out/in capabilities of
a cloud platform, a set of cloud benchmarks are widely
used. Benchmarks are commonly used to evaluate the per-
formance and scalability of the servers [152]. Experiments
are conducted mainly on all cloud platforms and models
including IaaS, PaaS, SaaS, etc. Benchmarks have both ap-
plications and generators. RUBBos [169], RUBis [170], TCP-
W [171], CloudStone [172], YCSB [173], MRBS [174] and
FIO [175], BenchCloud at USC, CloudSuite [176], and HI
Bench [177], are well-known benchmarking platforms.

3 CONTAINERIZATION

This section discusses container technologies, their pros
and cons. We then present the concepts and surrounding
technologies behind containers. Finally, we discuss works
from literature related to elasticity of containers.

3.1 Pros and Cons
Hypervisors are the most widely used virtualization tech-
niques in cloud computing. However, with the need of
more flexibility, scalability, and resource efficiency, cloud
providers are tapping hands-on into containers [178]. Con-
tainers or what is referred to as operating system-level vir-
tualization have evolved dramatically. Container-based vir-
tualization is much more lightweight and resource efficient
than VM-based virtualization. Containers isolate processes
on the core-level of the OS. In other words, they share the
same OS and they do not need guest OS, which allows to
manage resources efficiently and have more instances on the
same server. The use of containers eliminates the hypervisor
layer, redundant OS kernels, libraries, and binaries, which
are needed to run workloads or applications in a virtual
machine with the classical hypervisor virtualization. On the
contrary, the traditional hypervisor virtualization requires a
full OS on the VM, which consumes resources and causes
an extra overhead. Fig. 5 compares application deployment
using a hypervisor and a container manager. As shown in
Fig. 5, the hypervisor-based deployment requires different
operating systems and adds an extra layer of virtualization
compared to containerization.

Container technologies provide some advantages such
as:
• Containers decrease the start up time, processing and

storage overhead when compared to the traditional
VMs [179].

• Containers isolate and control processes and resources.
Namespaces provide an isolation per process. In Linux
OS, cgroups isolate resource usage such as memory, CPU,
block I/O and provide resource management. Names-
paces and cgroups do not incur overhead or performance
penalty.

Fig. 4. Container-based Virtualization vs. Traditional Virtualization

• Containers solve the issues of portability and consistency
between environments [180].

While containerization technology offers many advan-
tages, it has the following shortcomings:
• The use of containers poses security implications. The user

processes are isolated on the shared OS but it is hard,
at least until now, to provide the same level of isolation
between containers as VMs do.

• Since development of new containers such as Docker is
recent, it lacks many functionalities. The development is
in progress in this attractive domain.

• New container standards support only 64 bit systems.

3.2 Container technologies
The concept of containers has existed for over a decade.
Mainstream Unix-based operating systems, such as Solaris,
FreeBSD, Linux, had built-in support for containers. The in-
terest in containers led to many actors to develop solutions.
There are various implementations of containers such as:

Docker [181] is an open source management tool for
containers that automates the deployment of applications.
Docker uses a client-server architecture and it consists of
three main components: Docker client, Docker host and Docker
registry. Docker host represents the hosting machine on
which Docker daemon and containers run. Docker daemon
is responsible for building, running, and distributing the
containers. Docker client is the user interface to Docker.

Rocket (rkt) is an emerging new container technology.
With the advent of CoreOS [182], a new container called
Rocket is introduced. Besides rkt containers, CoreOS sup-
ports Docker. Rocket was designed to be a more secure,
inter-operable, and open container solution. Rocket is a new
competitor for Docker.

LinuX Containers (LXC) [183] is an operating system-
level virtualization method for running multiple isolated
Linux systems. It uses kernel-level namespaces to isolate the
container from the host.

LXD [184] is a lightweight hypervisor, designed by
Canonical, for Linux containers built on top of LXC to
provide a new and better user experience. LXD and Docker
make use of LXC containers.

Others: there are other open source light virtualization
technologies such as BSDJail [185] and OpenVZ [186].

Docker and Rocket are the most recent utilized container
technologies due to their enhanced features. We present
some of their surrounding technologies [187] in Fig. 5.
Docker uses runc and libcontainer runtimes that en-
able interactions with Linux kernel components (cgroups,



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 10

namespaces) to create and control containers. Rocket uses
rkt and CoreOS runtimes. For the management, Docker
uses Docker Engine that includes both Docker daemon and
Docker client for interacting with Docker daemon. Docker
daemon provides an API that abstracts container control
functions. Rkt CLI is the container management function-
ality in Rocket. Docker containers can be defined using
Docker images where container instances are created from
these images. The images are created with Dockerfiles, text
files containing all the commands needed to build Docker
images. Rkt supports Docker images, as well as Applica-
tion Container Images (ACI). Docker registry is the service
responsible for storing and distributing images.

Fig. 5. Docker and Rocket Ecosystems

3.3 Container orchestration and management tools
Container adoption is expected to grow across all applica-
tion life cycle steps, especially the production phase. How-
ever, some applications typically deal with workloads that
have dozens of containers running across multiple hosts.
This complex architecture dealing with multiple hosts and
containers demands a new set of management tools.

Docker Swarm is a well-known clustering management
tool for Docker containers. Swarm makes use of the Docker
standard interface (API) in order to achieve its tasks such as
starting Docker, choosing host to run containers on. Swarm
consists of Swarm agents and Swarm manager. Swarm
agents are run on each host, the manager orchestrates,
schedules containers on the hosts. Swarm uses discovery
process to add hosts to the cluster, and it supports both
Rocket and Docker containers. Swarm uses Docker-compose
to support horizontal elasticity.

Kubernetes: is another powerful container orchestration
tool built by Google [188]. Kubernetes has brought new con-
cepts about how containers are organized and networked.
Along with managing single containers, it manages pods.
Pod is a group of containers that can be created, deployed,
scheduled and destroyed together. Kubernetes supports flat
networking space, containers in a pod share the same IP,
where pods can talk to each other without the need for
NAT. In Kubernetes, replication controllers are responsible
for controlling, and monitoring the number of running pods
(called replicas) for a service [189], when a replica fails, a
new one will be launched, and this improves reliability and

fault tolerance. Kubernetes supports horizontal elasticity via
its internal Horizontal Pod Autoscaling (HPA) system. HPA
allows to automatically scales the number of pods based on
observed CPU utilization. It uses reactive threshold-based
rules for CPU utilization metric [190].

CoreOSFleet is a cluster management tool that repre-
sents the entire cluster as a single init system [191]. Fleet is
a low-level cluster management tool that allows a higher-
level solution such as Kubernetes to be settled on the top. It
provides a flexible management for the containers: fleet can
start, stop containers, get information about the running ser-
vices or containers in the different machines of the cluster,
migrate containers from one host to another. It is designed
to be fault-tolerant, and it supports both Rocket and Docker
containers.

Apache Mesos [192] is an open-source cluster manager
designed to manage and deploy application containers in
large-scale clustered environments. Mesos, alongside with
a job system like Marathon, takes care of scheduling and
running jobs and tasks. It also support horizontal elasticity.
OpenStack Magnum is a project that facilitates the utiliza-
tion of container technology in OpenStack. It adds multi-
tenant integration of prevailing container orchestration soft-
ware for use in OpenStack clouds.

Fig. 6 shows some of the most utilized orchestration tools
that are used to run applications on a distributed cluster of
machines. These tools use service discovery such as etcd,
Zookeeper, or Consul to distribute information between
services or cluster hosts.

Fig. 6. Container orchestration engines

3.4 Elasticity of containers

Although containers are gaining wide-spread popularity
among cloud providers, there are few works addressing
elasticity of containers. As shown in Fig. 2, the elasticity
solutions utilize various policies and methods. They have
different purposes, configurations, and architectures. These
mechanisms applied to the VMs can also be applied to
containers as described below.

[68] proposes a design of a system used for developing
and automatically deploying micro services. The proposed
approach manages more instances of the application when
load increases and scales down/in for fewer demands to
conserve energy. The requests count and memory load are
monitored, when they arrive a certain threshold, containers



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 11

are scaled out or in. A replication method is used to achieve
horizontal elasticity of container instances.

[56] proposes a control architecture that dynamically and
elastically adjusts VMs and containers provisioning. In this
work, containers and VMs can be adjusted vertically (by
varying the computational resources available for instances)
or horizontally (change the number of instances) according
to an objective function that searches to minimize costs.

[66] proposes a framework called MultiBox. MultiBox
is a means for creating and migrating containers among
cloud service providers. MultiBox makes use of the Linux
cgroups to create and migrate containers that are isolated
from the rest of the host OS. MultiBox containers support
both stateful and stateless applications.

[193] proposes an approach for the application live mi-
gration in Linux container for better resource provisioning
and interoperability. This approach uses Checkpoint/Re-
store In Userspace (CRIU) [194], a Linux functionality that
allows container live migration.

Promox VE [70] also permits manual vertical resizing
and migration for the LXC [183] and OpenVZ [186] con-
tainers. Promox VE is an open source server virtualization
management software.

DoCloud [67] is an elastic cloud platform based on
Docker. It permits to add or remove Docker containers to
adapt Web application’s resource requirements. In DoCloud,
a hybrid elasticity controller is proposed that uses proactive
and reactive models to scale out and proactive model to
scale in. Since cloud elasticity with containers is in its in-
fancy, almost all the elasticity actions in containers elasticity
solutions are performed using reactive approach that is
based on pre-defined thresholds. However, DoCloud uses
dynamic re-dimension method or predictive approaches to
trigger elasticity actions. It uses a hybrid reactive, proactive
controller that adopts threshold and ARMA approaches.

[69] proposes a tool to ensure the deployability and the
management of Docker containers. It allows synchroniza-
tion between the designed containers and those deployed.
In addition, it allows to manually adjust container’s vertical
elasticity.

[91] proposes a horizontal and vertical autoscaling tech-
nique based on a discrete-time feedback controller for VMs
and containers. This novel framework allows coordinating
infrastructure and platform adaptation for web applica-
tions. The application requirements and metadata must be
precisely defined to enable the system to work. It inserts
agents for each container and VM for monitoring and self-
adaptation.

As described in the works related to containers elasticity,
containers can be scaled horizontally and vertically. How-
ever, in order to implement the mechanisms used in VMs,
some modifications are needed. For example, in reactive
approaches, breath duration is a period of time left to give
the system a chance to reach a stable state after each scaling
decision, since containers adapt very quickly to workload
demand, breath duration must be small when compared
to VM. To our knowledge, there is no work that adopts
proactive approaches to scale containers except [67] which
uses ARMA prediction. In addition, container adaptations,
its hosted application adaptations and the monitoring sys-

tem may differ from VM because of the divergence of
technology.

Recently, many cloud providers such as Amazon EC2
Container Service, Google Container Engine, Docker Data-
center, Rackspace adopt containers in their cloud infrastruc-
ture and offer them to clients.

4 OPEN ISSUES AND RESEARCH CHALLENGES

Despite the diverse studies developed about elasticity in
cloud computing. There are still many open issues about
elasticity in general and research challenges about elastic-
ity in the container emerging technology that the cloud
providers and research academy have to deal with.
Open issues about elasticity are:
• Interoperability: In order to provide redundancy and

ensure reliability, the resources (compute, storage, etc.)
should be seamlessly leased from different cloud
providers or data centers to the clients. Cloud providers
use their own technology and techniques according to
their policy, budget, technical skills, etc. Therefore, it is
difficult to use multiple clouds to provide resources due
to the incompatibilities between them. The combined use
of diverse cloud providers remains a challenge because
of the lack of standardized APIs, each provider has its
own method on how users and applications interact with
the cloud infrastructure. It is not only the job of research
to solve this challenge, rather the industry needs to agree
on standards. Though there are some academic works that
allow allocating resources from different providers or data
centers, they are limited to certain criteria, for example,
[53] allows to allocate resources according to the price
offered or spot that matches the user’s bid.

• Granularity: As seen in Section 2.2.1, IaaS providers
offer a fixed set of resources such as Amazon instances,
though some users or applications have different needs,
as an example some applications need more CPU than
memory. Generally, there must be coordination in the
resource provisioning or de-provisioning. Most of elastic-
ity strategies are based on the horizontal elasticity. Thus,
vertical elasticity is very important to provide a related
combination of resources according to the demand. There
are many academic works [116], [133], [127] which re-
size CPU, memory or both but there is no coordination
between CPU and memory controllers. They resize CPU
and memory without regarding the coordination between
them. There are just a few works such as [132] which
coordinates the provisioning of both resources. In ad-
dition to the resource granularity, billing granularity is
another issue. Cloud providers charge clients based on
the resource consumption per fixed time unit, almost all
cloud providers use hour as a minimal billing time unit.
For example, using this billing system, VM is billed for
an hour even when used for 5 minutes. Few providers
CloudSigma [17], VPS.NET [195] allow to use fine-grained
billing system where the client will pay approximately its
real consumption of resources. The type of the elasticity
method has a great impact on the pricing model. For
example, implementing vertical elasticity is accompanied
by shifting towards fine-grained pricing policies while
using horizontal elasticity leads to extra costs since it



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 12

uses instances (i.e., VMs) as scaling units (coarse-grained
scale) and it also implies running load-balancer (i.e., addi-
tional consumption of resources). In addition, containers
billing is another pricing ambiguity. Since containers are
being recently used in production environments, there is
no standard pricing model for containers. For example,
Amazon charges by VM instance for the Amazon EC2
Container Service. Containers are usually accompanied by
orchestrators and cluster of nodes, and the container may
settle on VM or on a bare-metal host, therefore, there is
still no standard pricing model.

• Resource availability: The resource offered by the cloud
providers are limited. Therefore, the elasticity of scal-
ing resources is limited by the capacity of the cloud
infrastructure. In practice, no cloud provider offers un-
limited resources to its clients, but big providers such
as Google and Amazon are conceptually unlimited for
typical users. However, temporal network bottlenecks,
limited geographical locations, higher latency, etc. may
hinder the provisioning of resources.

• Hybrid solutions: Reactive and proactive approaches
have their advantages and drawbacks. Therefore, a so-
phisticated solution could combine both reactive and
proactive approaches and methods such as horizontal and
vertical scaling.

• Start-up time or spin-up time is defined as the time
needed to allocate resources in response to the client
demand. Start-up time can reach several minutes but the
worse is that the users (clients/customers) are charged
directly once they make their requests to scale-up or scale-
down resources before acquiring the resource. Provision-
ing resources may arrive late, and there are chargeable
costs, which are different from the real costs that match the
provided resources. Start-up time might be fast or slow,
it depends on several factors such as cloud layer (IaaS
or PaaS), target operating system, number of requested
VMs, VM size, resource availability in the region and
elasticity mechanism. The lower the start up time is, the
better the elastic solution is. Higher start up time affects
the efficiency of elasticity system.

• Thresholds definition: As we have discussed in Section
2.2.4, threshold-based mechanisms are based on defining
thresholds for the measured metrics such as CPU or mem-
ory utilization. Choosing suitable thresholds is not an easy
task, it is very tricky due to the workload or application
behavior changes, that makes the accuracy of the elasticity
rules subjective and prone to uncertainty. This can lead to
instability of the system. Therefore, it is necessary to have
an intelligent self-adaptation systems to deal with these
uncertainties.

• Prediction-estimation error: Proactive techniques antic-
ipate changes in the workload and react in advance to
scale-up or scale-down the resources. Herein the start-
up time issue is handled using these approaches, how-
ever, they could yield errors or what is called prediction-
estimation error. Estimation error can lead to resources
over-provisioning or under-provisioning. Proactive ap-
proaches are characterized as complicated and sophisti-
cated solutions, however, they are not accurate in some
cases, and this also depends on the application behav-
ior, unexpected workload changes such as sudden burst

or decrease. Some applications are hard to predict, in
consequence, predictive techniques can deviate from the
intended objectives. Having efficient prediction error han-
dling mechanisms to meet application SLOs with mini-
mum resource cost is worth considering.

• Optimal trade-off between the user’s requirements and
provider’s interests: There is a contradiction between
provider’s profit and user QoE [61]. Users’ QoE is defined
as the user satisfaction towards a service. The users search
to increase their QoE with the best price and to avoid inad-
equate provision of resources. While the cloud providers
search to increase their profit with providing good QoS
services, which means elasticity must ensure better use of
computing resources and more energy savings and allows
multiple users to be served simultaneously. In addition,
due to the market concurrences, cloud providers have
to offer cost-effective and QoS-aware services. Therefore,
finding an optimal trade-off between user-centric (re-
sponse time, budget spent, etc.) and provider-centric (reli-
ability, availability, profit) requirements is a big challenge.
Offering good QoS will increase customers satisfaction,
this will reflect a good reputation for the provider, and
the number of consumers will increase. Hence, the better
QoE, the better profits can come from the satisfied cus-
tomers. Generally, integrating QoE and QoS in the Cloud
ecosystem is a promising research domain that is still in
its early stages.

• Unified platforms for elastic applications: Before dis-
cussing elasticity and scalability, the application itself
should be elastic. Much of the elasticity solutions imple-
mented by the cloud providers are appropriate for certain
types of applications such as server-based applications
that depend on the replication of virtual instances and
load balancers to distribute the workload among the
instances. For that reason, what needed is the devel-
opment of unified platforms, tools, languages, patterns,
abstractions, architectures, etc. to support building and
execution of elastic applications. These tools must take
into consideration the many application characteristics
such as parallelism in order to use elasticity in clouds.
Developing such tools, architectures, etc. is a big challenge
and worth research, particularly as there is a huge move-
ment towards elasticity and distributed architecture in the
computational clouds.

• Evaluation methodology: There is no common approach
for evaluating elasticity solutions. It is extremely difficult
to compare and evaluate different elastic approaches us-
ing a formal evaluation technique and a unified testing
platform due to the heterogeneity of elastic systems, in
addition to the nature of different workloads behaviors.
In [196], A Performance Evaluation Framework for Auto-
Scaling Strategies in Cloud Applications (PEAS) is pro-
posed, however, the framework cannot be generalized on
all elastic solutions and evaluation scenarios.

Research challenges about elasticity of containers are:

• Monitoring containers: In order to provide data to be
analyzed and to make elasticity decisions or actions, mon-
itoring is an essential part in elasticity solutions. However,
it is not an easy task especially with containers. Container
hold applications and all of their dependencies and in



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 13

general many containers may be hosted on the same ma-
chine, therefore having stable systems that accurately and
rapidly monitor multiple containers is worth searching.
In fact, the monitoring challenge is not fully addressed in
container technologies.

• Container-based elasticity: There are many sophisticated
elasticity solutions for the traditional hypervisor-based
virtualization. Using these solutions with containers is
still an open challenge and research perspective. New
container technologies such as Docker use cgroups to limit
the resources consumed by a container, such as memory,
disk space and I/O, and also offer metrics about these
resources. A container can have static resource limits such
as 1 CPU and 2G RAM or can relativity share resources
with other containers on the hosting machine. Using the
latter technique, the container will get its resource in
function of resource usage for the neighboring contain-
ers or applications. For some reasons such as cost and
priority, static limits are set on containers. The questions
which arise are: i) Can we apply the elasticity solutions
used in VM on the containers? ii) How to use proactive
approaches to anticipate container resource usage and
react in advance to scale up/down resources? In addition,
many orchestration tools such as Kubernetes, Rancher, etc.
are used to manage and orchestrate clusters of containers,
but integrating autonomic vertical and horizontal elastic-
ity in these platforms is important.

• Combined elasticity between VMs and containers:
Nowadays, cloud providers use containers on the top of
virtual machines (see Fig. 4). This allows to have many
instances arranged across levels of hierarchy. Adjusting
container resources such as CPU, RAM, etc. to the demand
or workload at runtime will lead to efficient resource
utilization, and avoid SLA violations. The problem here
is that resizing container resources is limited by the re-
sources of the virtual machine in which it is placed. After
certain limits, the container cannot gain more resources,
fortunately the VM could be resized by its hypervisor,
which by its turn will allow to further resize the container.
The challenge to coordinate elasticity between the virtual
machine and its placed containers remains unaddressed.
Achieving elasticity control for VM and containers will
allow a great flexibility and would be an efficient elasticity
solution.

5 RELATED WORK

In this section, some of the related works that are relevant
to our work are presented. Being the key property behind
cloud computing, several works on elasticity are carried out
involving various elasticity approaches that depend on the
infrastructure, application or workload behavior. [4] is an
old survey, it proposes a basic classification for elasticity
solutions based on only four characteristics: scope, policy,
purpose and method. In addition, the discussion about these
characteristics is limited. New characteristics and even new
subcategories have appeared in more recent elastic solutions
such as the different techniques in workload anticipation in
proactive mode. [13] proposes a classification of the tech-
niques for managing elasticity based on strategy and action.
The concentration in this paper is on the elasticity strategy.

The strategy in this context studies elasticity management
solutions based on the quality goal. The quality goal can
be the Quality of Business, or the Quality of Service from
the Cloud Provider (CP) and Application Service Provider
(ASP) perspectives. Quality of Business refers to the ser-
vice provider’s revenue/profit, satisfaction. Three solutions
are evaluated based on this proposition depending on the
strategy adopted and whether reactive or proactive action
is followed to achieve elasticity. [152] concentrates mainly
on the auto-scaling reactive and proactive approaches and
elasticity tools. This work is limited to auto-scaling tech-
niques and experimentation tools. [3] addresses the elastic-
ity definition, metrics and tools. It brought many elastic-
ity definitions, in addition to statistical information about
elasticity. Such as the number of papers published per year,
per country. [14] is another work on cloud elasticity. It is a
complementary to our work, but we present elasticity strate-
gies and research challenges in more broader fashion. For
example, the mechanisms that can be reactive or proactive,
we clearly identified solutions that use these mechanisms
in each subcategory. [197] provides a survey of auto-scaling
techniques for web applications. According this work, the
actions of auto-scaling systems are based on performance
indicators that can be high or low level metrics. Low level
metrics such as CPU utilization are performance indicators
observed at the server layer while high level metrics such
as response time are performance indicators observed at the
application layer. This survey is limited to one category of
applications, i.e., web applications. Our work differs from
the above works in the following aspects: firstly, a complete
overview of the mechanisms implemented in the elasticity
solutions is provided, an extended classification is proposed
including the embedded elasticity. We have described elas-
ticity based on seven characteristics: configuration, scope,
purpose, mode, method, provider and architecture. We have
further classified each approach into sub mechanisms. For
example, time series analysis is a proactive approach that
anticipates workloads. It uses many mechanisms: moving
average, auto regression, ARMA, holt winter and machine
learning; we have provided examples for each case. Sec-
ondly, contrary to all previous works, this article is the first
that presents works related to container elasticity. Finally,
challenges and research perspectives for both VMs and
containers are handled in a broader context according to
our point of view.

6 CONCLUSION

Cloud computing is becoming increasingly popular; it is
being used extensively by many enterprises with a rapid
growing. The key feature that makes cloud platforms attrac-
tive is elasticity. Elasticity allows providing elastic resources
according to the needs in an optimal way. In this article, a
comprehensive study about elasticity is provided. It started
by talking about the elasticity definitions, and its related
terms scalability and efficiency. We have suggested an ex-
tended classification for the elasticity strategies based on the
existing academic and commercial solutions. The proposed
classification or taxonomy covers many features and aspects
of the cloud elasticity based on the analysis of diverse
proposals. Each aspect is then discussed in details providing



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 14

examples from the proposed proposals that handle cloud
elasticity. We have talked about the containerization and the
orchestration tools where elasticity will be popular in this
new technology. Many works on the container elasticity are
presented. Finally, challenges and new research perspectives
are presented.

ACKNOWLEDGMENT

This work is supported by the OCCIware research and
development project (www.occiware.org) funded by French
Programme d’Investissements d’Avenir. Likewise, this work
is also funded by Scalair company (www.scalair.fr).

REFERENCES

[1] Badger, Lee and Grance, Tim and Patt-Corner, Robert and Voas,
Jeff, “Draft cloud computing synopsis and recommendations,”
NIST special publication, vol. 800, p. 146, 2011.

[2] C. Pahl, “Containerization and the Paas Cloud,” IEEE Cloud
Computing, vol. 2, no. 3, pp. 24–31, 2015.

[3] E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G.
Gomes, and J. N. de Souza, “Elasticity in Cloud Computing: a
Survey,” Annals of Telecommunications, pp. 1–21, 2015.

[4] G. Galante and L. C. E. d. Bona, “A Survey on Cloud Computing
Elasticity,” in Proceedings of the 2012 IEEE/ACM Fifth International
Conference on Utility and Cloud Computing, ser. UCC ’12. Wash-
ington, DC, USA: IEEE Computer Society, 2012, pp. 263–270.

[5] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud
Computing: What It Is, and What It Is Not,” in Proceedings of the
10th International Conference on Autonomic Computing (ICAC 13).
San Jose, CA: USENIX, 2013, pp. 23–27.

[6] S. Lehrig, H. Eikerling, and S. Becker, “Scalability, Elasticity, and
Efficiency in Cloud Computing: A Systematic Literature Review
of Definitions and Metrics,” in Proceedings of the 11th International
ACM SIGSOFT Conference on Quality of Software Architectures,
QoSA ’15. New York, NY, USA: ACM, 2015, pp. 83–92.

[7] Chen, Junliang and Wang, Chen and Zhou, Bing Bing and Sun,
Lei and Lee, Young Choon and Zomaya, Albert Y., “Tradeoffs Be-
tween Profit and Customer Satisfaction for Service Provisioning
in the Cloud,” in Proceedings of the 20th International Symposium
on High Performance Distributed , ser. HPDC ’11. New York, NY,
USA: ACM, 2011, pp. 229–238.

[8] S. Genaud and J. Gossa, “Cost-wait Trade-offs in Client-side
Resource Provisioning with Elastic Clouds,” in 4th IEEE Interna-
tional Conference on Cloud Computing (CLOUD 2011), Washington,
United States, Jul. 2011, pp. 1–8.

[9] Islam, Sadeka and Lee, Kevin and Fekete, Alan and Liu, Anna,
“How a Consumer Can Measure Elasticity for Cloud Platforms,”
in Proceedings of the 3rd ACM/SPEC International Conference on
Performance Engineering, ser. ICPE ’12. New York, NY, USA:
ACM, 2012, pp. 85–96.

[10] M. Kuperberg, N. R. Herbst, J. G. von Kistowski, and R. Reuss-
ner, “Defining and Quantifying Elasticity of Resources in Cloud
Computing and Scalable Platforms,” Karlsruhe Institute of Tech-
nology (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Germany,
Tech. Rep., 2011.

[11] Ai, Wei and Li, Kenli and Lan, Shenglin and Zhang, Fan and
Mei, Jing and Li, Keqin and Buyya, Rajkumar, “On Elasticity
Measurement in Cloud Computing,” Scientific Programming, vol.
2016, 2016.

[12] G. Galante and L. C. E. D. Bona, “A programming-level approach
for elasticizing parallel scientific applications,” Journal of Systems
and Software, vol. 110, pp. 239 – 252, 2015.

[13] A. Najjar, X. Serpaggi, C. Gravier, and O. Boissier, “Survey
of Elasticity Management Solutions in Cloud Computing,” in
Continued Rise of the Cloud. Springer, 2014, pp. 235–263.

[14] A. Naskos, A. Gounaris, and S. Sioutas, “Cloud Elasticity: A
Survey,” in Algorithmic Aspects of Cloud Computing. Springer,
2016, pp. 151–167.

[15] H. Ghanbari, B. Simmons, M. Litoiu, C. Barna, and G. Iszlai,
“Optimal Autoscaling in a IaaS Cloud,” in Proceedings of the 9th
International Conference on Autonomic Computing, ICAC ’12. New
York, NY, USA: ACM, 2012, pp. 173–178.

[16] Profitbricks, Website https://www.profitbricks.com/
why-profitbricks#section=cloud-provider-overview.

[17] CloudSigma, Website https://www.cloudsigma.com/features/.
[18] S. C. Nayak and C. Tripathy, “Deadline sensitive lease scheduling

in cloud computing environment using AHP,” Journal of King
Saud University-Computer and Information Sciences, 2016.

[19] Wang, Hui and Tianfield, Huaglory and Mair, Quentin, “Auction
Based Resource Allocation in Cloud Computing,” Multiagent Grid
Syst., vol. 10, no. 1, pp. 51–66, Jan. 2014.

[20] Google App Engine, Website https://cloud.google.com/
appengine/.

[21] Microsoft, Website https://azure.microsoft.com/en-us/.
[22] A. Ashraf, B. Byholm, and I. Porres, “CRAMP: Cost-efficient

Resource Allocation for Multiple web applications with Proac-
tive scaling,” in 2012 IEEE 4th International Conference on Cloud
Computing Technology and Science (CloudCom), Dec 2012, pp. 581–
586.

[23] H. Fernandez, G. Pierre, and T. Kielmann, “Autoscaling Web
Applications in Heterogeneous Cloud Infrastructures,” in 2014
IEEE International Conference on Cloud Engineering (IC2E), March
2014, pp. 195–204.

[24] S. M.-K. Gueye, N. D. Palma, E. Rutten, A. Tchana, and
N. Berthier, “Coordinating self-sizing and self-repair managers
for multi-tier systems,” Future Generation Computer Systems,
vol. 35, pp. 14 – 26, 2014.

[25] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive
resource provisioning for read intensive multi-tier applications
in the cloud,” Future Generation Computer Systems, vol. 27, no. 6,
pp. 871 – 879, 2011.

[26] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive
and Self-configured CPU Resource Provisioning for Virtualized
Servers Using Kalman Filters,” in Proceedings of the 6th Interna-
tional Conference on Autonomic Computing, ICAC ’09. New York,
NY, USA: ACM, 2009, pp. 117–126.

[27] P. D. Kaur and I. Chana, “A resource elasticity framework for
qos-aware execution of cloud applications,” Future Generation
Computer Systems, vol. 37, pp. 14 – 25, 2014.

[28] F. Paraiso, P. Merle, and L. Seinturier, “soCloud: A Service-
Oriented Component-Based PaaS for Managing Portability, Pro-
visioning, Elasticity, and High Availability across Multiple
Clouds,” Computing, pp. 1–27, 2014.

[29] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini,
“DejaVu: Accelerating Resource Allocation in Virtualized Envi-
ronments,” in Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVII. New York, NY, USA: ACM, 2012, pp.
423–436.

[30] Amazon, Website http://aws.amazon.com.
[31] W. Dawoud, I. Takouna, and C. Meinel, “Elastic VM for cloud

resources provisioning optimization,” in Advances in Computing
and Communications. Springer, 2011, pp. 431–445.

[32] P. Marshall, K. Keahey, and T. Freeman, “Elastic Site: Us-
ing Clouds to Elastically Extend Site Resources,” in 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGrid), May 2010, pp. 43–52.

[33] Rackpace, Website http://www.rackspace.com.
[34] Rightscale, Website http://www.rightscale.com.
[35] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in

the cloud using predictive models for workload forecasting,” in
2011 IEEE International Conference on Cloud Computing (CLOUD).
IEEE, 2011, pp. 500–507.

[36] Scalr, Website http://www.scalr.com.
[37] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elas-

ticity provisioning system for the cloud,” in 2011 31st International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2011,
pp. 559–570.

[38] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: Elastic
Resource Scaling for Multi-tenant Cloud Systems,” in Proceedings
of the 2nd ACM Symposium on Cloud Computing, SOCC ’11. New
York, NY, USA: ACM, 2011, pp. 5:1–5:14.

[39] A. Iordache, C. Morin, N. Parlavantzas, E. Feller, and P. Riteau,
“Resilin: Elastic MapReduce over Multiple Clouds,” in 13th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. Delft, Netherlands: ACM, May 2013, pp. 261–268.

[40] S. Vijayakumar, Q. Zhu, and G. Agrawal, “Dynamic Resource
Provisioning for Data Streaming Applications in a Cloud Envi-
ronment,” in 2010 IEEE Second International Conference on Cloud

www.occiware.org
www.scalair.fr
https://www.profitbricks.com/why-profitbricks#section=cloud-provider-overview
https://www.profitbricks.com/why-profitbricks#section=cloud-provider-overview
https://www.cloudsigma.com/features/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://azure.microsoft.com/en-us/
http://aws.amazon.com
http://www.rackspace.com
http://www.rightscale.com
http://www.scalr.com


1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 15

Computing Technology and Science (CloudCom), Nov 2010, pp. 441–
448.

[41] T. C. Chieu and A. Mohindra and A. A. Karve, “Scalability
and Performance of Web Applications in a Compute Cloud,” in
2011 IEEE 8th International Conference on e-Business Engineering
(ICEBE), Oct 2011, pp. 317–323.

[42] Grozev, Nikolay and Buyya, Rajkumar, “Multi-cloud provision-
ing and load distribution for three-tier applications,” ACM Trans-
actions on Autonomous and Adaptive Systems (TAAS), vol. 9, no. 3,
p. 13, 2014.

[43] P. Sobeslavsky, “Elasticity in Cloud Computing,” Ph.D. disserta-
tion, Joseph Fourier University, ENSIMAG, 2011.

[44] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards
an Elastic Application Model for Augmenting the Computing
Capabilities of Mobile Devices with Cloud Computing,” Mob.
Netw. Appl., vol. 16, no. 3, pp. 270–284, Jun. 2011.

[45] I. Neamtiu, “Elastic executions from inelastic programs,” in Pro-
ceedings of the 6th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. ACM, 2011, pp. 178–183.

[46] D. Rajan, A. Canino, J. A. Izaguirre, and D. Thain, “Converting a
High Performance Application to an Elastic Cloud Application,”
in 2011 IEEE Third International Conference on Cloud Computing
Technology and Science (CloudCom), Nov 2011, pp. 383–390.

[47] Moller, Sebastian and Raake, Alexander, “Quality of experience,”
New York, US: Springer, 2014.

[48] T. Hobfeld and R. Schatz and M. Varela and C. Timmerer,
“Challenges of QoE Management for Cloud Applications,” IEEE
Communications Magazine, vol. 50, no. 4, pp. 28–36, April 2012.

[49] F. D. Munoz-Escoı and J. M. Bernabeu-Aubán, “A Survey on
Elasticity Management in the PaaS Service Model,” Technical
Report ITI-SIDI-2015/002, Universitat Politec̀nica de Valeǹcia, Spain.

[50] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya,
“The Aneka platform and QoS-driven resource provisioning for
elastic applications on hybrid Clouds ,” Future Generation Com-
puter Systems, vol. 28, no. 6, pp. 861 – 870, 2012.

[51] S. Dutta, S. Gera, A. Verma, and B. Viswanathan, “SmartScale:
Automatic Application Scaling in Enterprise Clouds,” in 2012
IEEE 5th International Conference on Cloud Computing (CLOUD),
June 2012, pp. 221–228.

[52] AWS Spot Instances, Website https://aws.amazon.com/ec2/
spot/.

[53] R. Buyya, R. Ranjan, and R. N. Calheiros, “InterCloud: Utility-
oriented federation of cloud computing environments for scaling
of application services,” in Algorithms and architectures for parallel
processing. Springer, 2010, pp. 13–31.

[54] A. da Silva Dias, L. H. V. Nakamura, J. C. Estrella, R. H. C. San-
tana, and M. J. Santana, “Providing IaaS resources automatically
through prediction and monitoring approaches,” in 2014 IEEE
Symposium on Computers and Communication (ISCC), June 2014,
pp. 1–7.

[55] R. Han, M. M. Ghanem, L. Guo, Y. Guo, and M. Osmond,
“Enabling cost-aware and adaptive elasticity of multi-tier cloud
applications,” Future Generation Computer Systems, vol. 32, pp. 82–
98, 2014.

[56] P. Hoenisch, I. Weber, S. Schulte, L. Zhu, and A. Fekete, “Four-
Fold Auto-Scaling on a Contemporary Deployment Platform Us-
ing Docker Containers,” in Service-Oriented Computing. Springer,
2015, pp. 316–323.

[57] D. Perez-Palacin, R. Mirandola, and R. Calinescu, “Synthesis
of Adaptation Plans for Cloud Infrastructure with Hybrid Cost
Models,” in Proceedings of the 2014 40th EUROMICRO Conference
on Software Engineering and Advanced Applications, SEAA ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 443–
450.

[58] L. M. Vaquero, D. Morán, F. Galán, and J. M. Alcaraz-Calero, “To-
wards Runtime Reconfiguration of Application Control Policies
in the Cloud,” Journal of Network and Systems Management, vol. 20,
no. 4, pp. 489–512, Dec. 2012.

[59] D. Villela, P. Pradhan, and D. Rubenstein, “Provisioning servers
in the application tier for e-commerce systems,” in Twelfth IEEE
International Workshop on Quality of Service, IWQOS 2004, June
2004, pp. 57–66.

[60] A. Beloglazov and R. Buyya, “Adaptive Threshold-based Ap-
proach for Energy-efficient Consolidation of Virtual Machines
in Cloud Data Centers,” in Proceedings of the 8th International
Workshop on Middleware for Grids, Clouds and e-Science, MGC ’10.
New York, NY, USA: ACM, 2010, pp. 4:1–4:6.

[61] H.-J. Hong, D.-Y. Chen, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu,
“Placing virtual machines to optimize cloud gaming experience,”
IEEE Transactions on Cloud Computing, vol. 3, no. 1, pp. 42–53,
2015.

[62] K. Keahey, P. Armstrong, J. Bresnahan, D. LaBissoniere, and
P. Riteau, “Infrastructure Outsourcing in Multi-cloud Environ-
ment,” in Proceedings of the 2012 Workshop on Cloud Services,
Federation, and the 8th Open Cirrus Summit, FederatedClouds ’12.
New York, NY, USA: ACM, 2012, pp. 33–38.

[63] F. Paraiso, P. Merle, and L. Seinturier, “Managing Elasticity
Across Multiple Cloud Providers,” in Proceedings of the 2013
International Workshop on Multi-cloud Applications and Federated
Clouds, MultiCloud ’13. New York, NY, USA: ACM, 2013, pp.
53–60.

[64] E. Kafetzakis and H. Koumaras and M. A. Kourtis and
V. Koumaras, “QoE4CLOUD: A QoE-driven multidimensional
framework for cloud environments,” in 2012 International Con-
ference on Telecommunications and Multimedia (TEMU), July 2012,
pp. 77–82.

[65] A. Najjar and C. Gravier and X. Serpaggi and O. Boissier, “Mod-
eling User Expectations Satisfaction for SaaS Applications Using
Multi-agent Negotiation,” in 2016 IEEE/WIC/ACM International
Conference on Web Intelligence (WI), Oct 2016, pp. 399–406.

[66] J. Hadley, Y. El Khatib, G. Blair, and U. Roedig, MultiBox:
lightweight containers for vendor-independent multi-cloud deploy-
ments, ser. Communications in Computer and Information Sci-
ence. Springer Verlag, 11 2015, pp. 79–90.

[67] C. Kan, “DoCloud: An elastic cloud platform for Web applica-
tions based on Docker,” in 2016 18th International Conference on
Advanced Communication Technology (ICACT), Jan 2016, pp. 478–
483.

[68] P. P. Kukade and G. Kale, “Auto-Scaling of Micro-Services Using
Containerization,” International Journal of Science and Research
(IJSR), pp. 1960–1963, 2013.

[69] F. Paraiso, S. Challita, Y. Al-Dhuraibi, and P. Merle, “Model-
Driven Management of Docker Containers,” in 9th IEEE Inter-
national Conference on Cloud Computing (CLOUD), San Francisco,
United States, Jun. 2016, pp. 718–725.

[70] Proxmox VE, Website https://www.proxmox.com/en/
proxmox-ve.

[71] AzureWatch, Website http://www.paraleap.com/azurewatch/.
[72] E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement

learning towards automating resource allocation and application
scalability in the cloud,” Concurrency and Computation: Practice
and Experience, vol. 25, no. 12, pp. 1656–1674, 2013.

[73] T. Knauth and C. Fetzer, “Scaling Non-elastic Applications Using
Virtual Machines,” in 2011 IEEE International Conference on Cloud
Computing (CLOUD), July 2011, pp. 468–475.

[74] G. Moltó, M. Caballer, E. Romero, and C. de Alfonso, “Elastic
memory management of virtualized infrastructures for applica-
tions with dynamic memory requirements,” Procedia Computer
Science, vol. 18, pp. 159–168, 2013.

[75] G. A. Moreno and J. Cmara and D. Garlan and B. Schmerl,
“Efficient Decision-Making under Uncertainty for Proactive Self-
Adaptation,” in 2016 IEEE International Conference on Autonomic
Computing (ICAC), July 2016, pp. 147–156.

[76] S. Barker, Y. Chi, H. Hacigümüs, P. Shenoy, and E. Cecchet, “Shut-
tleDB: Database-Aware Elasticity in the Cloud,” in 11th Interna-
tional Conference on Autonomic Computing (ICAC 14). Philadel-
phia, PA: USENIX Association, Jun. 2014, pp. 33–43.

[77] L. Beernaert, M. Matos, R. Vilaça, and R. Oliveira, “Automatic
Elasticity in OpenStack,” in Proceedings of the Workshop on Secure
and Dependable Middleware for Cloud Monitoring and Management,
SDMCMM ’12. New York, NY, USA: ACM, 2012, pp. 2:1–2:6.

[78] F. Cruz, F. Maia, M. Matos, R. Oliveira, J. a. Paulo, J. Pereira,
and R. Vilaça, “MeT: Workload Aware Elasticity for NoSQL,”
in Proceedings of the 8th ACM European Conference on Computer
Systems, EuroSys ’13. New York, NY, USA: ACM, 2013, pp. 183–
196.

[79] E. Kassela and C. Boumpouka and I. Konstantinou and N.
Koziris, “Automated workload-aware elasticity of NoSQL clus-
ters in the cloud,” in 2014 IEEE International Conference on Big
Data (Big Data), Oct 2014, pp. 195–200.

[80] R. Han, L. Guo, M. Ghanem, and Y. Guo, “Lightweight Resource
Scaling for Cloud Applications,” in 2012 12th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGrid),
May 2012, pp. 644–651.

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://www.proxmox.com/en/proxmox-ve
https://www.proxmox.com/en/proxmox-ve
http://www.paraleap.com/azurewatch/


1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 16

[81] P. Jamshidi, A. Ahmad, and C. Pahl, “Autonomic resource pro-
visioning for cloud-based software,” in Proceedings of the 9th
International Symposium on Software Engineering for Adaptive and
Self-Managing Systems. ACM, 2014, pp. 95–104.

[82] I. Konstantinou, E. Angelou, D. Tsoumakos, C. Boumpouka,
N. Koziris, and S. Sioutas, “TIRAMOLA: Elastic NoSQL Provi-
sioning Through a Cloud Management Platform,” in Proceedings
of the 2012 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’12. New York, NY, USA: ACM, 2012, pp.
725–728.

[83] L. R. Moore, K. Bean, and T. Ellahi, “A coordinated reactive and
predictive approach to cloud elasticity,” CLOUD COMPUTING
2013: The Fourth International Conference on Cloud Computing,
GRIDs, and Virtualization, pp. 87–92, 2013.

[84] Moore, Laura R. and Bean, Kathryn and Ellahi, Tariq, “Trans-
forming Reactive Auto-scaling into Proactive Auto-scaling,” in
Proceedings of the 3rd International Workshop on Cloud Data and
Platforms, CloudDP ’13. New York, NY, USA: ACM, 2013, pp.
7–12.

[85] F. J. A. Morais, F. V. Brasileiro, R. V. Lopes, R. A. Santos,
W. Satterfield, and L. Rosa, “Autoflex: Service Agnostic Auto-
scaling Framework for IaaS Deployment Models,” in 2013 13th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), May 2013, pp. 42–49.

[86] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “Ag-
ile: Elastic distributed resource scaling for infrastructure-as-a-
service,” in Proceedings of the USENIX International Conference on
Automated Computing (ICAC13). San Jose, CA, 2013, pp. 69–82.

[87] P. D. Sanzo, D. Rughetti, B. Ciciani, and F. Quaglia, “Auto-
tuning of Cloud-Based In-Memory Transactional Data Grids via
Machine Learning,” in 2012 Second Symposium on Network Cloud
Computing and Applications (NCCA), Dec 2012, pp. 9–16.

[88] M. Serafini, E. Mansour, A. Aboulnaga, K. Salem, T. Rafiq, and
U. F. Minhas, “Accordion: Elastic scalability for database systems
supporting distributed transactions,” Proceedings of the VLDB
Endowment, vol. 7, no. 12, pp. 1035–1046, 2014.

[89] D. Serrano, S. Bouchenak, Y. Kouki, T. Ledoux, J. Lejeune,
J. Sopena, L. Arantes, and P. Sens, “Towards QoS-Oriented SLA
Guarantees for Online Cloud Services,” in 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), May 2013, pp. 50–57.

[90] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and
D. Rajan, “Prepare: Predictive performance anomaly prevention
for virtualized cloud systems,” in 2012 IEEE 32nd International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2012,
pp. 285–294.

[91] Baresi, Luciano and Guinea, Sam and Leva, Alberto and Quat-
trocchi, Giovanni, “A Discrete-time Feedback Controller for Con-
tainerized Cloud Applications,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016. New York, NY, USA: ACM, 2016, pp.
217–228.

[92] Moreno, Gabriel A. and Cámara, Javier and Garlan, David and
Schmerl, Bradley, “Proactive Self-adaptation Under Uncertainty:
A Probabilistic Model Checking Approach,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 1–12.

[93] A. Najjar and X. Serpaggi and C. Gravier and O. Boissier, “Multi-
agent Negotiation for User-centric Elasticity Management in the
Cloud,” in 2013 IEEE/ACM 6th International Conference on Utility
and Cloud Computing, Dec 2013, pp. 357–362.

[94] An, Bo and Lesser, Victor and Irwin, David and Zink, Michael,
“Automated Negotiation with Decommitment for Dynamic Re-
source Allocation in Cloud Computing,” in Proceedings of the
9th International Conference on Autonomous Agents and Multiagent
Systems: Volume 1, AAMAS ’10. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems,
2010, pp. 981–988.

[95] T. Chieu, A. Mohindra, A. Karve, and A. Segal, “Dynamic Scaling
of Web Applications in a Virtualized Cloud Computing Environ-
ment,” in IEEE International Conference on e-Business Engineering
ICEBE ’09, Oct 2009, pp. 281–286.

[96] X. Dutreilh, N. Rivierre, A. Moreau, J. Malenfant, and I. Truck,
“From Data Center Resource Allocation to Control Theory and
Back,” in 2010 IEEE 3rd International Conference on Cloud Comput-
ing (CLOUD), July 2010, pp. 410–417.

[97] M. Z. Hasan, E. Magana, A. Clemm, L. Tucker, and S. L. D.
Gudreddi, “Integrated and autonomic cloud resource scaling,” in
Network Operations and Management Symposium (NOMS). IEEE,
2012, pp. 1327–1334.

[98] M. Maurer, I. Brandic, and R. Sakellariou, “Enacting SLAs in
Clouds Using Rules,” in Proceedings of the 17th International Con-
ference on Parallel Processing, Euro-Par’11 - Volume Part I. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 455–466.

[99] A. Naskos and E. Stachtiari and A. Gounaris and P. Katsaros and
D. Tsoumakos and I. Konstantinou and S. Sioutas, “Dependable
Horizontal Scaling Based on Probabilistic Model Checking,” in
2015 15th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, May 2015, pp. 31–40.

[100] H. C. Lim, S. Babu, and J. S. Chase, “Automated Control for
Elastic Storage,” in Proceedings of the 7th International Conference
on Autonomic Computing, ICAC ’10. New York, NY, USA: ACM,
2010, pp. 1–10.

[101] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh, “Automated
Control in Cloud Computing: Challenges and Opportunities,” in
Proceedings of the 1st Workshop on Automated Control for Datacenters
and Clouds, ser. ACDC ’09. New York, NY, USA: ACM, 2009, pp.
13–18.

[102] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre,
and I. Truck, “Using reinforcement learning for autonomic re-
source allocation in clouds: Towards a fully automated work-
flow,” in Seventh International Conference on Autonomic and Au-
tonomous Systems ICAS, 2011, pp. 67–74.

[103] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Ag-
ile Dynamic Provisioning of Multi-tier Internet Applications,”
ACM Transactions on Autonomous and Adaptive Systems, vol. 3,
no. 1, pp. 1:1–1:39, Mar. 2008.

[104] A. Al-Shishtawy and V. Vlassov, “ElastMan: Elasticity Manager
for Elastic Key-value Stores in the Cloud,” in Proceedings of the
2013 ACM Cloud and Autonomic Computing Conference, CAC ’13.
New York, NY, USA: ACM, 2013, pp. 7:1–7:10.

[105] S.-M. Park and M. Humphrey, “Self-Tuning Virtual Machines for
Predictable eScience,” in Proceedings of the 2009 9th IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid, CCGRID
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
356–363.

[106] J. Huang, C. Li, and J. Yu, “Resource prediction based on double
exponential smoothing in cloud computing,” in 2nd International
Conference on Consumer Electronics Communications and Networks
(CECNet), April 2012, pp. 2056–2060.

[107] H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan, “Online
Self-Reconfiguration with Performance Guarantee for Energy-
Efficient Large-Scale Cloud Computing Data Centers,” in 2010
IEEE International Conference on Services Computing (SCC), July
2010, pp. 514–521.

[108] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource
scaling for cloud systems,” in 2010 International Conference on
Network and Service Management (CNSM), Oct 2010, pp. 9–16.

[109] S. Khatua, A. Ghosh, and N. Mukherjee, “Optimizing the utiliza-
tion of virtual resources in Cloud environment,” in 2010 IEEE
International Conference on Virtual Environments Human-Computer
Interfaces and Measurement Systems (VECIMS), Sept 2010, pp. 82–
87.

[110] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical Prediction
Models for Adaptive Resource Provisioning in the Cloud,” Future
Generation Computer Systems, vol. 28, no. 1, pp. 155–162, Jan. 2012.

[111] J. Kupferman, J. Silverman, P. Jara, and J. Browne, “Scaling into
the cloud,” CS270-advanced operating systems, 2009.

[112] E. Caron, F. Desprez, and A. Muresan, “Forecasting for Cloud
computing on-demand resources based on pattern matching,”
INRIA, Research Report RR-7217, Jul. 2010.

[113] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin, “VCONF: A
Reinforcement Learning Approach to Virtual Machines Auto-
configuration,” in Proceedings of the 6th International Conference
on Autonomic Computing, ICAC ’09. New York, NY, USA: ACM,
2009, pp. 137–146.

[114] G. Tesauro, N. Jong, R. Das, and M. Bennani, “A Hybrid Rein-
forcement Learning Approach to Autonomic Resource Alloca-
tion,” in IEEE International Conference on Autonomic Computing
ICAC ’06, June 2006, pp. 65–73.

[115] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid
elasticity controller for cloud infrastructures,” in 2012 IEEE Net-



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 17

work Operations and Management Symposium (NOMS), April 2012,
pp. 204–212.

[116] E. Lakew, C. Klein, F. Hernandez-Rodriguez, and E. Elmroth,
“Towards faster response time models for vertical elasticity,” in
2014 IEEE/ACM 7th International Conference on Utility and Cloud
Computing (UCC), Dec 2014, pp. 560–565.

[117] Q. Zhang, L. Cherkasova, and E. Smirni, “A Regression-Based
Analytic Model for Dynamic Resource Provisioning of Multi-
Tier Applications,” in Fourth International Conference on Autonomic
Computing ICAC ’07, June 2007, pp. 27–27.

[118] L. Wang, J. Xu, M. Zhao, Y. Tu, and J. Fortes, “Fuzzy Modeling
Based Resource Management for Virtualized Database Systems,”
in 2011 IEEE 19th International Symposium on Modeling, Analy-
sis Simulation of Computer and Telecommunication Systems (MAS-
COTS), July 2011, pp. 32–42.

[119] R. Calheiros, R. Ranjan, and R. Buyya, “Virtual Machine Pro-
visioning Based on Analytical Performance and QoS in Cloud
Computing Environments,” in 2011 International Conference on
Parallel Processing (ICPP), Sept 2011, pp. 295–304.

[120] C.-L. Hung, Y.-C. Hu, and K.-C. Li, “Auto-Scaling Model for
Cloud Computing System,” International Journal of Hybrid Infor-
mation Technology, vol. 5, no. 2, pp. 181–186, 2012.

[121] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar,
“Cost-Efficient and Application SLA-Aware Client Side Request
Scheduling in an Infrastructure-as-a-Service Cloud,” in 2012 IEEE
5th International Conference on Cloud Computing (CLOUD), June
2012, pp. 213–220.

[122] Z. Liu, S. Wang, Q. Sun, H. Zou, and F. Yang, “Cost-aware cloud
service request scheduling for saas providers,” The Computer
Journal, pp. 291–301, 2013.

[123] D. Niu, H. Xu, B. Li, and S. Zhao, “Quality-assured cloud band-
width auto-scaling for video-on-demand applications,” in 2012
Proceedings IEEE INFOCOM, March 2012, pp. 460–468.

[124] J. Tirado, D. Higuero, F. Isaila, and J. Carretero, “Predictive data
grouping and placement for cloud-based elastic server infrastruc-
tures,” in 2011 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), May 2011, pp. 285–294.

[125] S. Spinner, S. Kounev, X. Zhu, L. Lu, M. Uysal, A. Holler, and
R. Griffith, “Runtime Vertical Scaling of Virtualized Applications
via Online Model Estimation,” in 2014 IEEE Eighth International
Conference on Self-Adaptive and Self-Organizing Systems (SASO),
Sept 2014, pp. 157–166.

[126] L. Yazdanov and C. Fetzer, “Vertical Scaling for Prioritized VMs
Provisioning,” in 2012 Second International Conference on Cloud and
Green Computing (CGC), Nov 2012, pp. 118–125.

[127] Y. Wang, C. C. Tan, and N. Mi, “Using Elasticity to Improve
Inline Data Deduplication Storage Systems,” in Proceedings of the
2014 IEEE International Conference on Cloud Computing, CLOUD
’14. Washington, DC, USA: IEEE Computer Society, 2014, pp.
785–792.

[128] W. Zhao and Z. Wang, “Dynamic Memory Balancing for Virtual
Machines,” in Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE ’09.
New York, NY, USA: ACM, 2009, pp. 21–30.

[129] W. Dawoud, I. Takouna, and C. Meinel, “Elastic virtual machine
for fine-grained cloud resource provisioning,” in Global Trends in
Computing and Communication Systems. Springer, 2012, pp. 11–25.

[130] Y. Diao, N. Gandhi, J. Hellerstein, S. Parekh, and D. Tilbury,
“Using mimo feedback control to enforce policies for interrelated
metrics with application to the apache web server,” in Network
Operations and Management Symposium, 2002. NOMS 2002. 2002
IEEE/IFIP, 2002, pp. 219–234.

[131] Dynamic scaling of CPU and RAM, Website https:
//cwiki.apache.org/confluence/display/CLOUDSTACK/
Dynamic+scaling+of+CPU+and+RAM, Visited 2016/02.

[132] S. Farokhi, E. Lakew, C. Klein, I. Brandic, and E. Elmroth, “Coor-
dinating CPU and Memory Elasticity Controllers to Meet Service
Response Time Constraints,” in 2015 International Conference on
Cloud and Autonomic Computing (ICCAC), Sept 2015, pp. 69–80.

[133] L. Lu, X. Zhu, R. Griffith, P. Padala, A. Parikh, P. Shah, and
E. Smirni, “Application-driven dynamic vertical scaling of virtual
machines in resource pools,” in Network Operations and Manage-
ment Symposium (NOMS), 2014 IEEE, May 2014, pp. 1–9.

[134] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual ma-
chine migration with adaptive, memory compression,” in Cluster
Computing and Workshops, 2009. IEEE International Conference on
CLUSTER ’09, Aug 2009, pp. 1–10.

[135] X. Qin, W. Wang, W. Zhang, J. Wei, X. Zhao, and T. Huang, “Elas-
ticat: A load rebalancing framework for cloud-based key-value
stores,” in 2012 19th International Conference on High Performance
Computing (HiPC), Dec 2012, pp. 1–10.

[136] R. S. S. Kirthica1, “Provisioning rapid elasticity by light-weight
live resource migration,” International Journal of Modern Trends in
Engineering and Research, pp. 99–106, July 2015.

[137] Y. Zhao and W. Huang, “Adaptive Distributed Load Balancing
Algorithm Based on Live Migration of Virtual Machines in
Cloud,” in Proceedings of the 2009 Fifth International Joint Conference
on INC, IMS and IDC, NCM ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 170–175.

[138] D. Bruneo, “A Stochastic Model to Investigate Data Center Per-
formance and QoS in IaaS Cloud Computing Systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 3, pp.
560–569, March 2014.

[139] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi, “Albatross:
Lightweight Elasticity in Shared Storage Databases for the Cloud
Using Live Data Migration,” Proc. VLDB Endowment, vol. 4, no. 8,
pp. 494–505, May 2011.

[140] S. He, L. Guo, and Y. Guo, “Real Time Elastic Cloud Management
for Limited Resources,” in 2011 IEEE International Conference on
Cloud Computing (CLOUD), July 2011, pp. 622–629.

[141] M. R. Hines and K. Gopalan, “Post-copy based live virtual
machine migration using adaptive pre-paging and dynamic self-
ballooning,” in Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments. ACM,
2009, pp. 51–60.

[142] Sotiriadis, Stelios and Bessis, Nik and Amza, Cristiana and
Buyya, Rajkumar, “Elastic load balancing for dynamic virtual ma-
chine reconfiguration based on vertical and horizontal scaling,”
IEEE Transactions on Services Computing, 2016.

[143] N. M. Calcavecchia, B. A. Caprarescu, E. Di Nitto, D. J. Dubois,
and D. Petcu, “DEPAS: a decentralized probabilistic algorithm
for auto-scaling,” Computing, vol. 94, no. 8-10, pp. 701–730, 2012.

[144] T. Chieu and H. Chan, “Dynamic Resource Allocation via Dis-
tributed Decisions in Cloud Environment,” in 8th IEEE Interna-
tional Conference on e-Business Engineering (ICEBE), Oct 2011, pp.
125–130.

[145] Siebenhaar, Melanie and Nguyen, The An Binh and Lampe,
Ulrich and Schuller, Dieter and Steinmetz, Ralf, “Concurrent
Negotiations in Cloud-based Systems,” in Proceedings of the 8th
International Conference on Economics of Grids, Clouds, Systems, and
Services, GECON’11. Berlin, Heidelberg: Springer-Verlag, 2012,
pp. 17–31.

[146] S. Son and K. M. Sim, “A price-and-time-slot-negotiation mecha-
nism for cloud service reservations,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 3, pp. 713–
728, 2012.

[147] G. Copil, D. Moldovan, H. L. Truong, and S. Dustdar, “On
Controlling Cloud Services Elasticity in Heterogeneous Clouds,”
in 2014 IEEE/ACM 7th International Conference on Utility and Cloud
Computing (UCC), Dec 2014, pp. 573–578.

[148] Datapipe, Website https://www.datapipe.com/gogrid/.
[149] P. Marshall, H. Tufo, and K. Keahey, “Provisioning policies for

elastic computing environments,” in 2012 IEEE 26th International
Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW). IEEE, 2012, pp. 1085–1094.

[150] L. Wu, S. K. Garg, and R. Buyya, “SLA-based admission control
for a Software-as-a-Service provider in Cloud computing envi-
ronments,” Journal of Computer and System Sciences, vol. 78, no. 5,
pp. 1280–1299, 2012.

[151] T. L.-B. J. Miguel-Alonso and J. A. Lozano, “A Review of Auto-
scaling Techniques for Elastic Applications in Cloud Environ-
ments,” Journal Grid Computing, vol. 12, no. 4, pp. 559–592, Dec.
2014.

[152] T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano, “Auto-
scaling techniques for elastic applications in cloud environ-
ments,” Department of Computer Architecture and Technology, Uni-
versity of Basque Country, Tech. Rep. EHU-KAT-IK-09, vol. 12, p.
2012, 2012.

[153] Y. Kuno, K. Nii, and S. Yamaguchi, “A Study on Performance
of Processes in Migrating Virtual Machines,” in 2011 Tenth Inter-
national Symposium on Autonomous Decentralized Systems, March
2011, pp. 567–572.

[154] D. Kapil, E. S. Pilli, and R. C. Joshi, “Live virtual machine
migration techniques: Survey and research challenges,” in 2013

https://cwiki.apache.org/confluence/display/CLOUDSTACK/Dynamic+scaling+of+CPU+and+RAM
https://cwiki.apache.org/confluence/display/CLOUDSTACK/Dynamic+scaling+of+CPU+and+RAM
https://cwiki.apache.org/confluence/display/CLOUDSTACK/Dynamic+scaling+of+CPU+and+RAM
https://www.datapipe.com/gogrid/


1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2711009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 18

IEEE 3rd International Advance Computing Conference (IACC), Feb
2013, pp. 963–969.

[155] D. G. V V.Vinothina Dr.R.Sridaran, “A Survey on Resource Al-
location Strategies in Cloud Computing,” International Journal of
Advanced Computer Science and Applications (IJACSA), vol. 3, no. 6,
pp. 97–104, 2012.

[156] M. G. Hafez and M. S. Elgamel, “Agent-Based Cloud Computing:
A Survey,” in 2016 IEEE 4th International Conference on Future
Internet of Things and Cloud (FiCloud), Aug 2016, pp. 285–292.

[157] D. Talia, “Clouds Meet Agents: Toward Intelligent Cloud Ser-
vices,” IEEE Internet Computing, vol. 16, no. 2, pp. 78–81, March
2012.

[158] CloudSim, Website http://www.cloudbus.org/cloudsim/.
[159] Piraghaj, Sareh Fotuhi and Dastjerdi, Amir Vahid and Calheiros,

Rodrigo N and Buyya, Rajkumar, “ContainerCloudSim: An En-
vironment for Modeling and Simulation of Containers in Cloud
Data Centers,” Software: Practice and Experience, 2016.

[160] GreenCloud, Website https://greencloud.gforge.uni.lu.
[161] OMNeT++, Website https://omnetpp.org/.
[162] iCanCloud, Website http://www.arcos.inf.uc3m.es/

∼icancloud/Home.html.
[163] SimGrid, Website http://simgrid.gforge.inria.fr.
[164] EMUSIM, Website http://www.cloudbus.org/cloudsim/

emusim/.
[165] World Cup 98 Trace, Website http://ita.ee.lbl.gov/html/contrib/

WorldCup.html.
[166] ClarkNet, Website http://ita.ee.lbl.gov/html/contrib/

ClarkNet-HTTP.html.
[167] Bangari, Keerthi and Rao, Chittipothula CY, “REAL WORK-

LOAD CHARACTERIZATION AND SYNTHETIC WORKLOAD
GENERATION.”

[168] A. Ali-Eldin, J. Tordsson, E. Elmroth, and M. Kihl,
“Workload classification for efficient auto-scaling of cloud
resources,” Technical Report, 2005.[Online]. Available:
www8.cs.umu.se/research/uminf/reports/2013/013/part1.pdf,
Tech. Rep., 2005.

[169] Rubbos, Website http://jmob.ow2.org/rubbos.html.
[170] Rubis, Website http://rubis.ow2.org.
[171] TCP-W, Website http://www.tpc.org/tpcw/.
[172] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,

A. Klepchukov, S. Patil, A. Fox, and D. Patterson, “CloudStone:
Multi-platform, multi-language benchmark and measurement
tools for Web 2.0,” in Proc. of CCA, vol. 8, 2008.

[173] YCSB, Website https://en.wikipedia.org/wiki/YCSB.
[174] A. Sangroya, D. Serrano, and S. Bouchenak, “Benchmarking

Dependability of MapReduce Systems,” in 2012 IEEE 31st Sympo-
sium on Reliable Distributed Systems (SRDS), Oct 2012, pp. 21–30.

[175] fio, Website http://freecode.com/projects/fio.
[176] CloudSuite, Website http://cloudsuite.ch.
[177] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, The HiBench

Benchmark Suite: Characterization of the MapReduce-Based Data
Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 209–228.

[178] Containers: The Next Big Thing in Cloud?,
Website http://insights.wired.com/profiles/blogs/
what-s-the-next-big-thing-in-cloud#axzz3sJ2gJP26.

[179] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and Linux contain-
ers,” in International Symposium on IEEE Performance Analysis of
Systems and Software (ISPASS), March 2015, pp. 171–172.

[180] A. Tosatto, P. Ruiu, and A. Attanasio, “Container-based orches-
tration in cloud: State of the art and challenges,” in 2015 Ninth
International Conference on Complex, Intelligent, and Software Inten-
sive Systems (CISIS). IEEE, 2015, pp. 70–75.

[181] D. Merkel, “Docker: Lightweight Linux Containers for Consistent
Development and Deployment,” Houston, TX, Mar. 2014.

[182] An Introduction to CoreOS System Components, Website
https://www.digitalocean.com/community/tutorials/
an-introduction-to-coreos-system-components.

[183] LXC: Whats LXC, Website https://linuxcontainers.org/lxc/
introduction/.

[184] LXD, Website https://linuxcontainers.org/lxd/introduction/.
[185] BSDJails, Website https://www.freebsd.org/cgi/man.cgi?

query=jail&format=html.
[186] OpenVZ, Website https://openvz.org/Main Page.
[187] The Container Ecosystem Project, Website https://sysdig.com/

the-container-ecosystem-project/.

[188] Kubernetes, Website http://kubernetes.io/.
[189] Swarm v. Fleet v. Kubernetes v. Mesos, Website http://radar.

oreilly.com/2015/10/swarm-v-fleet-v-kubernetes-v-mesos.
html.

[190] Burns, Brendan and Grant, Brian and Oppenheimer, David and
Brewer, Eric and Wilkes, John, “Borg, Omega, and Kubernetes,”
Commun. ACM, vol. 59, no. 5, pp. 50–57, Apr. 2016.

[191] Containers: Package, ship and run any software as a
self-sufficient unit, Website https://coreos.com/using-coreos/
containers/.

[192] Apache Mesos, Website http://mesos.apache.org.
[193] Polo Sony, Ivin, “Inter-Cloud application migration and portabil-

ity using Linux containers for better resource provisioning and
interoperability,” Ph.D. dissertation, Dublin, National College of
Ireland, 2015.

[194] C. Yang, “Checkpoint and Restoration of Micro-service in Docker
Containers,” icmii-15, 2015.

[195] VPS.NET, Website https://www.vps.net.
[196] Papadopoulos, Alessandro Vittorio and Ali-Eldin, Ahmed and

Arzen, Karl-Erik and Tordsson, Johan and Elmroth, Erik, “PEAS:
A Performance Evaluation Framework for Auto-Scaling Strate-
gies in Cloud Applications,” ACM Trans. Model. Perform. Eval.
Comput. Syst., vol. 1, no. 4, pp. 15:1–15:31, Aug. 2016.

[197] Qu, Chenhao and Calheiros, Rodrigo N and Buyya, Rajkumar,
“Auto-scaling Web Applications in Clouds: A Taxonomy and
Survey,” arXiv preprint arXiv:1609.09224, 2016.

Yahya Al-dhuraibi received his bachelor of sci-
ence degree in computer science and engineer-
ing in 2010 from Aden University, Yemen. He
also received his Master degree in network sys-
tem architecture from University of Evry, France
in 2014. His current research focuses on cloud
computing elasticity in Scalair company and In-
ria, France in context of PhD.

Fawaz Paraiso is postdoctoral researcher in
Computer Science Department at Inria since
2015. He received his PhD in computer sci-
ence in 2014 from University of Lille 1. Before
he joined Inria in 2011, he worked in software
and telecommunication companies as software
engineer and then lead software engineer. His
current research interests include cloud comput-
ing, parallel and distributed systems, adaptive
systems, middleware, and natural language pro-
cessing.

Nabil Bashir received his Ph.D degree in com-
puter science from the University of Rennes,
France. He received also diploma of computer
science engineering from Batna University, Al-
geria and M.S. degree in computer science
from the University of Rennes, France. His re-
search interests include optimization, algorithms
for constrained path computation, architectures
and inter-carrier service delivery with assured
QoS, complex event processing within Alcatel-
Lucent Bell Labs and Inria. Nowadays, he is

head of R&D and new technologies department at Scalair cloud
provider. Current research is around cloud elasticity and resources
optimization.

Philippe Merle is senior researcher at Inria. He
was associate professor at University of Lille 1,
France. He obtained a PhD in computer science
from University of Lille 1. His research is about
software engineering for distributed systems, es-
pecially cloud computing, service oriented com-
puting, middleware, model driven engineering,
and component-based software engineering. He
has co-authored two patents, two OMG specifi-
cations, one book, 15 journal papers, and more
than 70 international conference papers.

http://www.cloudbus.org/cloudsim/
https://greencloud.gforge.uni.lu
https://omnetpp.org/
http://www.arcos.inf.uc3m.es/~icancloud/Home.html
http://www.arcos.inf.uc3m.es/~icancloud/Home.html
http://simgrid.gforge.inria.fr
http://www.cloudbus.org/cloudsim/emusim/
http://www.cloudbus.org/cloudsim/emusim/
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html
http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html
http://jmob.ow2.org/rubbos.html
http://rubis.ow2.org
http://www.tpc.org/tpcw/
https://en.wikipedia.org/wiki/YCSB
http://freecode.com/projects/fio
http://cloudsuite.ch
http://insights.wired.com/profiles/blogs/what-s-the-next-big-thing-in-cloud#axzz3sJ2gJP26
http://insights.wired.com/profiles/blogs/what-s-the-next-big-thing-in-cloud#axzz3sJ2gJP26
https://www.digitalocean.com/community/tutorials/an-introduction-to-coreos-system-components
https://www.digitalocean.com/community/tutorials/an-introduction-to-coreos-system-components
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxd/introduction/
https://www.freebsd.org/cgi/man.cgi?query=jail&format=html
https://www.freebsd.org/cgi/man.cgi?query=jail&format=html
https://openvz.org/Main_Page
https://sysdig.com/the-container-ecosystem-project/
https://sysdig.com/the-container-ecosystem-project/
http://kubernetes.io/
http://radar.oreilly.com/2015/10/swarm-v-fleet-v-kubernetes-v-mesos.html
http://radar.oreilly.com/2015/10/swarm-v-fleet-v-kubernetes-v-mesos.html
http://radar.oreilly.com/2015/10/swarm-v-fleet-v-kubernetes-v-mesos.html
https://coreos.com/using-coreos/containers/
https://coreos.com/using-coreos/containers/
http://mesos.apache.org
https://www.vps.net

